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ABSTRACT 

 

 Over the past few years, researchers have focused their attention on the development of 

targeted cancer therapies to minimize the side effects associated with non-targeted treatments 

such as chemotherapy. Specifically, these approaches have focused on blocking growth factor 

receptors (GFR) that are overexpressed in cancer cells. In this thesis, we also focus on targeting 

overexpressed GFR; however, instead of blocking the GFR, our novel approach aims at using 

them to selectively enhance the endocytotic process of macropinocytosis to deliver peptides that 

either disrupts the mitochondria or inhibits glycolysis.  

 Herein, we show the selective enhancement of macropinocytosis by the fusion protein 

comprised of the keratinocyte growth factor (KGF) fused to elastin like polypeptide (ELP), 

KGF-ELP. Furthermore, we report the synthesis of the fusion protein consisting of 

mitochondriotoxic peptide (KLAKLAK)2 with ELP, (KLAKLAK)2-ELP. We show that 

(KLAKLAK)2-ELP forms nanoparticles (NPs) that are internalized via macropinocytosis and 

their internalization is facilitated by the interaction between the ELP domain and heparan sulfate 

proteoglycan (HSPG) on the cell surface. This internalization results in mitochondrial swelling, 

depolarization and subsequent cell death. Moreover, we show that heterogeneous NPs 

comprising of the two fusions KGF-ELP and (KLAKLAK)2-ELP selectively kill lung cancer 

cells expressing the keratinocyte growth factor receptor (KGFR).  

 We also report the synthesis of the fusion consisting of peptides derived from a 

phosphorylated domain of the glycolytic enzyme phophoglycerate mutase (PGM) and ELP, 
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PGM-ELP. We demonstrate that this fusion inhibits the step in glycolysis that converts 3-

phosphoglycerate (3PG) to 2-phosphoglycerate (2PG); the results show that cell death occurred 

preferentially in lung cancer cells compared to normal cells. Additionally, the heterogeneous NPs 

comprising of KGF-ELP and PGM-ELP selectively enhanced killing in lung cells with high 

levels KGFR. Finally, the synthesis of a fusion proteins consisting of four PGM domains fused 

to ELP, (PGM)4-ELP, exhibits higher cytotoxic effect and efficiency when compared to the 

single PGM domain fusion, PGM-ELP.  

 Overall, we conclude that targeting overexpressed growth factor receptors to stimulate 

macropinocytosis can be a tremendously selective therapy for the treatment of lung cancer. This 

can result in attenuating side effects and improvement of the patient’s prognosis. 
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CHAPTER 1: INTRODUCTION 

 

1.1 The Lungs 

 The lungs are a pair of spongy organs located in the thoracic cavity where they are 

protected by the rib cage. They are divided into lobes. The right lung consists of three lobes: 

superior, middle and inferior. The superior and middle lobes are separated by a gap called the 

horizontal fissure; the oblique fissure separates the middle and inferior lobes. The left lung is 

smaller and comprised of only two lobes, superior and inferior, separated by an oblique fissure, 

Figure 1.1. 

 The main function of the lungs is the oxygenation of blood and removal of carbon 

dioxide (CO2). To achieve this gas exchange air travels deep into the lungs through structures 

named air passages. First, air is inhaled through the nose or mouth, and then it continues to the 

trachea, which splits into two branches, the bronchi. The air continues its path into smaller 

branches of the bronchi called bronchioles, which end in air sacs called alveoli. The alveolus is 

the site where gas exchange actually occurs. Capillaries cover the alveoli and bring blood that 

has been depleted of oxygen (O2) and is rich is CO2 in contact with the alveoli which have high 

concentration of O2 and low concentration of CO2. Because of the different in concentration, O2 

diffuses into the blood stream while CO2 travels into the alveoli, Figure 1.2.  

 The oxygenation of blood is a very critical process; O2 in the blood is delivered to all 

different tissues in the body, cells in these tissues use it to produce energy in the form of ATP. 

Life could not be sustained without O2. Just as important is the removal of CO2. This gas is a 
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byproduct of respiration and its accumulation in the body can cause the blood to become acidic 

Increase in the acidity of the blood can damage the function of vital organs such as the brain.  

1.2 Lung Cancer 

 Lung cancer is the abnormal, uncontrolled growth of cells in the lungs, usually 

originating from the epithelial cells in the air passages. This uncontrolled growth can result in the 

formation of a mass of cells called a lung tumor. Tumors may remain at the site where they 

originated in which case they are considered to be benign; contrastingly, tumors may also spread 

to other parts of the body in which case they are identified as malignant. The spreading of cancer 

cells over the body is termed metastasis and makes the treatment of any cancer very challenging.  

 The American Cancer Society recognizes three main types of lung cancers: Non-Small 

Cell Lung Cancer (NSCLC), Small Cell Lung Cancer (SCLC), and Lung Carcinoid Tumors. The 

frequency of each of these types of lung cancer varies considerably with NSCLC being the most 

common with 85% prevalence, while SCLC and Lung Carcinoid Tumors only represent 15% and 

5%, respectively [1]. Lung cancer is associated with factors that include smoking, exposure to 

second hand smoking, exposure to chemicals such asbestos, and even air pollution [2].  

 There are more than one hundred types of cancer; among which, lung cancer is the 

leading cause of death in the United States [3]. The American Cancer Society estimated 221,200 

new cases and 158,040 deaths due to lung cancer in the year 2015. Lung cancer is responsible for 

28% of cancer related deaths in the United States; this is more than the mortality rate of the next 

four most common cancer types (colon, breast, prostate, pancreas) combined [4], Figure 1.3. In 

addition, the 5-year observed survival rate is low; it varies from 49% to 1%. The variation 

depends on the stage at which the cancer was detected. 
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1.3 Stages of NSCLC 

 As discussed above, lung cancer is the uncontrolled growth of cells in the lungs. 

Continued growth can result in the invasion of nearby tissues and organs. Furthermore, cancer 

can expand to distant organs and tissues through the lymphatic system or the blood stream. The 

characterization of this progression in size and spreading is called staging. Staging is important 

because it allows the identification of proper treatment as well as the prognosis of the patient. 

Staging can also determine if a patient is suitable to be part of a clinical trial. The following 

stages are used for NSCLC: occult stage, stage 0, stage I (A and B), stage II (A and B), stage III 

(A and B), and stage IV [5]. 

 Briefly, the occult stage is the earliest stage at which NSCLC can be detected. In this 

stage, cancer has not metastasized but remains in situ. Cancer cells can be found in the sputum. 

In stage 0, abnormal cells can be found in the lining of the lungs. These cells are localized; 

therefore, this stage is also called carcinoma in situ. In stage I, a tumor has formed. This stage is 

further subdivided depending on the size and invasion. In stage IA, the tumor is less than 3 cm 

while in stage IB the tumor is between 3 and 5 cm. and may have spread to the bronchus or may 

have invaded the inner membrane that covers the lung.[5]. Stage II is characterized by the 

spreading of the tumor to the lymph node located on the same side of the tumor. Furthermore, 

stage IIA is characterized by a size that is less than 5 cm while stage IIB size is between 5 and 7 

cm. In stage III, cancer can be of any size and spread to the lymph nodes of the same side of the 

tumor. In addition in stage IIIA, other structures may have also been invaded such as the chest 

wall, diaphragm, and the membrane around the heart. Similarly, in stage IIIB, cancer is present 

in the lymph nodes and can be of any size. In addition to the structures that are invaded during 

stage IIIA, in this stage the cancer may have also spread to the esophagus, the trachea, and the 
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heart. In stage IV, cancer may have all the characteristics of the previous stages; in addition, 

tumors will be present in both lungs. Moreover, the cancer has spread to various organs such as 

the brain and the liver. 

1.4 Common Lung Cancer Treatments for NSCLC 

 The treatment of choice for lung cancer as well as any other cancer depends on several 

aspects: stage of cancer, patient’s health, side effects, and presence of other lung complications 

such as bronchitis. The most common options for the treatment of lung cancer include surgery, 

radiation therapy, chemotherapy, targeted therapy or a combination of the aforementioned. 

1.4.1 Surgery 

 Lung surgery is very complex and is mainly limited to the removal of tumors that have 

not metastasized. In addition, the patient’s health and lung functionality need to be addressed 

before surgery can be conducted; therefore, surgery is not always an option. However, surgery 

remains the best alternative to cure NSCLC. Studies have shown that surgery complemented 

with chemotherapy and/or radiation therapy has further improved the outcome in early stages of 

NSCLC [6]. Furthermore, after the removal of a lung mass by surgery, there is a 1% to 2% risk  

of recurrence [7]. The types of lung surgery for the removal of a lung tumor include 

segmentectomy, lobectomy, and pneumonectomy; the choice depends on whether part of a lobe, 

a lobe or the entire lung needs removal, respectively. 

1.4.2 Radiation Therapy  

 This type of therapy involves the use of ionizing radiation such as x-rays or gamma rays. 

Radiotherapy can be used as a primary treatment or an adjuvant treatment. The main goal 

radiation therapy is to shrink tumors and/or kill cancer cells. Similar to surgery, the use of 

radiation therapy is limited to localized tumors. In addition, there are limits to the amount of 
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radiation lungs and other organs can be exposed to without causing irreversible damage. This 

therapy however offers an alternative for stage I NSCLC patients for whom surgery is not an 

option. Studies have suggested that this type of therapy may have cure rates equivalent to surgery 

in stage I patients [8]. 

1.4.3 Chemotherapy  

 Chemotherapy consists of the use of anti-cancer drugs; the function of these drugs is 

mainly targeting fast dividing cells. Contrary to surgery and radiation therapy that are commonly 

used when the cancer is localized, chemotherapy can act throughout the body, which allows for 

the treatment of cancer that has already metastasized. However, this inherent characteristic of 

chemotherapeutic drugs can also affect non-cancerous cells that divide quickly such as red blood 

cells and epithelial cells lining the intestines. Therefore, even though chemotherapy is commonly 

used to treat lung cancer, it involves the indiscriminate killing of normal, healthy cells resulting 

in side effects. Furthermore, the development of resistance to chemotherapeutics often occurs, 

making this therapy, in many cases, ineffective over a period of time. Several chemotherapeutic 

drugs have been developed, they include DNA damaging drugs such as cisplatin or doxorubicin, 

and mitotic inhibitors such as paclitaxel [9]. However, due to significant side effects such as 

nephrotoxicity that may result from its nonspecific systemic organ distribution and inadequate 

intratumor concentrations, researchers are developing therapeutic agents that selectively affect 

tumor cells, targeted therapy. 

1.4.4 Targeted Therapy 

 The goal of targeted therapy is to minimize side effects associated with the unselective 

killing of cells due to chemotherapeutics. Targeted therapy exploits differences between normal 

and cancerous cells. One of the most popular targets for lung cancer is the epidermal growth 



www.manaraa.com

 6 

factor receptor (EGFR) that is overexpressed in 50 % to 90 % of lung cancers [10, 11]. 

Consequently, monoclonal antibodies against the EGFR (cetuximab) and tyrosine kinase 

inhibitors (TKI) that inhibit the tyrosine kinase activity of EGFR (erlotinib or gefitinib) have 

been developed and have shown mixed results in the treatment of lung cancer in several clinical 

trials [9]. Although, TKIs show good response rates in lung cancer patients, acquired resistance 

to TKI treatment always develops after a median of 10 months from the initiation of treatment 

[12]. This acquired resistance can be attributed to several factors such as secondary mutation of 

the EGFR gene, amplification of the MET gene or overexpression of HGF [12]. The issue of 

acquired resistance is present not only in TKI treatment but in all other chemotherapy treatments 

as well, since tumor cells bypass the pathways that these drugs target; rendering the drugs 

ineffective. Therefore, patient prognosis still remains poor with 5-year survival rate of less than 

5% and a median survival of approximately 1 year. 

1.5 Novel Strategy for Targeting NSCLC Cells 

 Current targeted therapies aim at blocking growth factor receptors to prevent cells from 

proliferating and growing. The problem faced by this strategy is that cancer cells are highly 

mutagenic and a minimal change in the target renders the therapy ineffective. In this thesis, we 

look into a novel strategy that takes advantage of overexpressed growth factor receptor and use 

them to selectively enhance the endocytotic mechanism of macropinocytosis (chapter 3). This 

stimulation occurs through the activation of the keratinocyte growth factor receptor (KGFR), 

which has been reported to be overexpressed in lung cancer [13, 14]. Furthermore, this activation 

is used to deliver a mitochondriotoxic peptide (Chapter 3) or a glycolytic inhibiting peptide 

(Chapter 4) to KGFR overexpressing cells.  
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1.6 Summary 

 Lung cancer is the leading cause of death among all the different cancer types, being non-

small cell lung cancer (NSCLC) the most common with an 85% incidence. There are different 

options for the treatment of this type of cancer including surgery, radiotherapy, chemotherapy, 

targeted therapy, and a combination of the aforementioned. The treatment of choice depends on 

various aspects such as stage of the cancer and health of the patient. Although much progress has 

been achieved in the treatment of lung cancer, the 5-year survival rate remains as low as 5% with 

a median survival of approximately 1 year. Furthermore, the issue of acquired resistance and the 

recurrence of the cancer seem to be a common theme regardless of the treatment of choice. 

Altogether, there is a clear need for further research and development of novel therapies for the 

treatment of lung cancer. 

 

 
Figure 1.1 Anatomy of the lung and related structures [15]. 
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Figure 1.2 Gas exchange in the alveoli [16]. 

 
Figure 1.3 Mortality rates of different cancer types [1]. 
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CHAPTER 2: (KLAKLAK)2 -ELP CAUSES APOPTOSIS THROUGH 

MITOCHONDRIAL DEPOLARIZATION 

 

2.1 Note to Reader 

 Part of this chapter was published in Medical Oncology: R. Iglesias and P. Koria, 

"Leveraging growth factor induced macropinocytosis for targeted treatment of lung cancer," Med 

Oncol, vol. 32, p. 259, Dec 2015. Permission is included in Appendix B. 

2.2 Introduction 

 KLAKLAKKLAKLAK, (KLAKLAK)2, is a peptide that disrupts the outer mitochondrial 

membrane once uptaken by cells. However, cells are impermeable to it; therefore, its cytotoxic 

effect in mammalian cells is hindered. In this chapter we show that the fusion comprising of 

(KLAKLAK)2 and elastin like polypeptide (ELP), (KLAKLAK)2-ELP, is internalized by cells. 

Surprisingly, the functionalization of the fusion was not required as others have suggested. 

Furthermore, the fusion retains the self-assemble property of ELPs and the bioactivity of 

(KLAKLAK)2; therefore, the fusion causes mitochondrial depolarization. We also show that the 

ELP domain of the fusion interacts with heparan sulfate proteoglycan (HSPG) on the cell 

surface. Moreover, we establish that (KLAKLAK)2-ELP is internalized by the transient, 

endocytotic mechanism of macropinocytosis.  

2.3 Elastin Like Polypeptide (ELP) 

 Elastin like peptides (ELPs) are biodegradable, non-immunogenic protein-based 

polymers composed of tandemly repeated blocks of (Val-Pro-Gly-X-Gly)N where X can be any 
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residue but Pro [1-3]. This sequence motif is derived from the hydrophobic domain of 

tropoelastin, a soluble precursor form of elastin. An interesting property of ELPs is their ability 

to undergo a phase transition at physiological temperatures [4, 5]. When the temperature is below 

their inverse transition temperature, also known as the lower critical solution temperature 

(LCST), they assume a random coil structure and are soluble in aqueous solution. However, at 

temperatures higher than the LCST, ELPs undergo an entropy driven self-assembly rendering 

them insoluble. This property enables recombinant ELPs to be expressed in bacteria and rapidly 

purified to high homogeneity using inverse temperature cycling (ITC) [2, 6]. Since ELPs are 

genetically encodable, biologically active peptides or proteins can be genetically fused to ELPs. 

These fusions can be expressed and readily purified since they maintain the phase transitioning 

property of the fused ELP domain. Moreover, owing to the transition property of ELPs, the 

chimeric fusion proteins can self-assemble into nanoparticles [7, 8]. Finally, the biological 

activity of the fused moiety in the chimeric fusion is retained [9, 10].  

2.4 Mitochondriotoxic Peptide (KLAKLAK)2 

 (KLAKLAK)2, is a synthetic 14-amino acid peptide whose structure was designed to 

mimic natural occurring antimicrobial peptides [11]. These peptides are usually characterized by 

their positive charge as well as their alpha helix structure [12]. Their selective antimicrobial 

action is attributed to the difference in overall membrane charge between bacterial and 

mammalian cells; bacterial membranes have an overall negative charge while mammalian cells 

are neutral. This translates to the higher transmembrane potential observed in bacterial cells. This 

same high transmembrane potential is also noted in the mitochondria, an organelle the main 

function of which is the production of energy through the electron transport chain (ETC). The 

ETC consist of a series of molecules whose main function is the creation of a proton gradient 
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which drives the production of ATP. Among those molecules that are part of the ETC is 

Cytochrome c (cyt c). Cyt c is a small molecule that when released to the cytoplasm causes cell 

death, apoptosis. 

 (KLAKLAK)2 is an amphipathic molecule that has a high positive charge, it has been 

shown to interact with the mitochondria causing swelling and mitochondrial depolarization [13]. 

Its mode of action is speculated to be through the creation of pores on the outer mitochondrial 

membrane that disrupts the proton gradient resulting in swelling and eventual release of cyt c 

[14, 15]. For (KLAKLAK)2 to be effective, it must be internalized; however, mammalian cells 

are impermeable to (KLAKLAK)2. Previous works have demonstrated that when (KLAKLAK)2 

is part of a nanostructure, cells become more permeable to it [16, 17]. Therefore, we reasoned 

that creating the fusion (KLAKLAK)2-ELP would result in its internalization by taking 

advantage of the ELP phase transition characteristic above its T t.  

2.5 Fusion (KLAKLAK)2-ELP 

2.5.1 Materials and Methods 

2.5.1.1 Materials 

 Fetal bovine serum (FBS) and Dulbecco modified Eagle Medium (DMEM) were 

purchased from Life Technologies. The restriction enzymes and other enzymes used for cloning 

were purchased from New England Biolabs (Ipswich, MA). Dr. Haura from Moffit Cancer 

Center kindly donated A549 and HCC827 cells. The apoptotic peptide gene and ELP gene were 

purchased from GenScript (Piscataway, NJ). The miniprep and gel extraction kits were 

purchased from QIAGEN.  
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2.5.1.2 Synthesis of (KLAKLAK)2-ELP 

 The PUC57 plasmids containing the genes (VPGVG)5 , (VPGVG)2VPGCG(VPGVG)2  

and (KLAKLAK)2  were purchased from Genscript (Piscataway, NJ). The V40C2 encoding gene 

was made using the recursive direction ligation method as described previously [18]. The 

(KLAKLAK)2 gene was excised using PflMI and Bgll enzymes. These genes were then run on a 

0.08% agarose gel and extracted using a QIAquick Gel Extraction Kit. PflMI linearized the 

pUC19 vector containing the ELP sequence and the excised (KLAKLAK)2 gene was cloned in 

frame with the ELP gene.  This resulted in the pUC19 vector containing the (KLAKLAK)2-ELP 

fusion protein gene flanked by pfIMI and BgII sites. The sequences encoding for the fusion 

proteins were then removed from the pUC19 vector using pflMI and BgII enzymes and 

recovered by gel extraction as explained above. After extraction, these genes were cloned in a 

modified pET25b+ expression vector through SfiI site. This vector was modified to incorporate 

an SfiI cloning site for the cloning of the fusion protein. 

The pET25b+ vector containing the fusion protein gene was transformed into BLRD 

competent cells through heat shock at 42oC. A starting culture of 50 ml was inoculated overnight 

and added to a 1 L culture the next day. The 1 L culture was then grown overnight and 

subsequently purified by inverse transition cycling as described previously [19]. Figure 2.1 

shows a representation of the genes for (KLAKLAK)2 and ELP and the production of the fusion 

(KLAKLAK)2-ELP. Also, the illustration of the thermoresponsive property of the synthesized 

fusion above and below its Tt  is represented. 

2.5.1.3 Cell Culture  

 Cells were cultured in a humidified incubator at 370C and 5% CO2.  Cells were seeded on 

24 or 48-well plates until they were approximately 70% confluent. A549 and HCC827 (human 
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lung carcinoma) were grown in DMEM supplemented with 10% FBS and 1% AA (Complete 

Medium).  

2.5.1.4 Dynamic Light Scattering of (KLAKLAK)2-ELP 

 Lyophilized (KLAKLAK)2-ELP was resuspended in PBS to a final concentration of 50 

μM. The solution was filter using a 220 μm filter and transfer to a cuvette. The analysis was 

performed using Zetasizer Nano S at different temperatures (20oC and 37 oC). 

2.5.1.5 Transmission Electron Microscopy of (KLAKLAK)2-ELP 

 Lyophilized (KLAKLAK)2-ELP was diluted in PBS to a final concentration of 50 μM. 

Enough solution was added to a carbon-coated grid to cover its surface. The grid was placed on 

an incubator at 37 oC for the (KLAKLAK)2-ELP to form nanoparticles. Once adsorbed on the 

grid, the particles were stained with uranyl formate staining solution and analyzed at Electron 

Microscopy Core Lab in the Interdisciplinary Science Building at the University of South 

Florida. 

2.5.1.6 Mitochondrial Swelling 

 Cells (HCC827) were treated for 24 Hrs. with 50 μM of (KLAKLAK)2-ELP. After the 

treatment, cells were fixed with 2.5% glutaraldehyde in 100 mM phosphate buffer at pH 7. 

Following fixation, standard embedding protocol for resin section was followed. TEM imaging 

was performed at Electron Microscopy Core Lab in the Interdisciplinary Science Building at the 

University of South Florida. 

2.5.1.7 Mitochondrial Depolarization Assay 

 Cells (10,000/well) were seeded on 48-well plates using fresh complete media. After 24 

hours, cells were treated with the indicated treatment of (KLAKLAK)2-ELP or (KLAKLAK)2 

peptide. A JC-1 assay kit (Life Technologies cat # M34152) was used for mitochondrial 
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depolarization analysis. After treatment, media was removed and cells were washed with ice-

cold PBS. JC-1 was added to fresh media to a final concentration of 2uM and this was added to 

the cells for 1 hour after which media was removed and cells were washed with ice-cold PBS 

before fluorescent pictures were taken (10X magnification) using EVOS fluorescence 

microscope (Life technologies). For the positive control sample, Carbonylcyanide m- 

chlorophenylhydrazone (CCCP) to a final concentration of 50 uM was added simultaneously 

with JC-1.  

 Mitochondrial depolarization analysis was also performed using flow cytometry. Cells 

(50,000/well) were seeded on 24 well plates and let grow to about 70% confluency; after which, 

they received no treatment, CCCP treatment or (KLAKLAK)2-ELP treatment.; one sample 

(assay control) was used for gating purposes. The CCCP treatment was added 30 minutes before 

analysis. After (KLAKLAK)2-ELP treatment for 24 hours, cells were washed with PBS and 

trypsinized (0.25 % trypsin). Trypsin was removed by centrifugation (800 rpm) and cells were 

resuspended in 300 μl of PBS. To exclude non-viable cells, 4',6-diamidino-2-phenylindole 

(DAPI) was added to the samples before analysis. Cells were analyzed using flow cytometry and 

the intensity in the red (PI) and green (FITC) channels were reported. 

2.5.1.8 Labeling of the Fusion Proteins 

 The cysteines present in the ELP sequence were labeled using maleimide chemistry for 

the particle internalization experiments. Fluorescein-5-maleimide (AnaSpec Inc cat # 81405) was 

mixed with the fusion proteins. The mixture was placed on an orbital shaker and incubated at 

room temperature for 2 hours. Unconjugated fluorescein was removed by a series of hot and cold 

cycles on a bench top centrifuge ran at a speed of 20000g for 10 minutes each time. The 

supernatant was discarded after the hot spin and an equal amount of cold sterile PBS was added. 
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This mixture was spun at 4 0C and the supernatant was collected while the pellet was discarded. 

This formed one complete cycle of inverse temperature cycling. To get rid of all the 

unconjugated fluorescein, at least 5 cycles were performed.  

2.5.1.9 Fusion Protein Internalization Assay 

 Cells (50,000/well) were seeded in 24-well plates and cultured as described above. They 

were let grow until they were about 70% confluent and were treated with the indicated 

treatments. For analysis, cells were washed twice with ice-cold PBS and were trypsinized using 

0.25% trypsin (100 μl). Cells were pelleted and re-suspended in 300 μl of PBS containing 50 

-diamidino-2-

phenylindole (DAPI) to allow exclusion of nonviable cells. The cells were analyzed using flow 

cytometry and either the percent of fluorescent cells or the average intensity was quantified and 

reported.  

 Some wells were pre-treated for 30 minutes with either inhibitors of macropinocytosis 

(amiloride and wortmannin) or receptor-mediated endocytosis (chlorpromazine). After the pre-

treatment, cells were treated with the indicated labeled fusion proteins and internalization was 

measured by flow cytometry as described above. The inhibitor concentrations were used as 

described previously [20]

heparan sulfate proteoglycans (HSPG) or the elastin receptor, cells were pre-treated with either 

20mIU/ml) or lactose (5 mM).  
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2.5.1.10 Live/Dead Assay 

 Cells were seeded and treated with the indicated treatments for 3 days. After their 

respective treatments, ethidium homodimer-1 (Life Technologies cat # E1169) was added to 

each well to a final concentration of 4uM. Cells were then incubated for 1 hour at 37oC. After the 

incubation time, cells were washed twice with PBS to remove floating cells. NucBlue (Life 

Technologies R37605) was then added for 20 minutes to stain nuclei, followed by two washes 

with PBS. Eight random pictures were taken per well using the EVOS fluorescence microscope 

(10X magnification). Pictures were taken in different channels (blue, green, red) and overlay. 

Live/dead cell discrimination was performed using image J.  A macro was created using the 

functions split channel, threshold, and cell counter to count the total number of live cells (blue) 

in each picture. Dead cells that were not removed after the washes were stained red or magenta 

(blue and red); adjusting the threshold for the picture being analyzed easily isolated these cells. 

Therefore, the final count of cells per picture only included live cells.  

2.5.1.11 Statistical Analysis 

 For statistical significance, the p value was calculated using ANOVA single factor.  P 

values < 0.05 were considered significant. The reported errors indicate the ±SEM. 

2.5.2 Results 

2.5.2.1 (KLAKLAK)2-ELP Preserves the Phase Transition Property of ELPs 

 ELPs are genetically encodable; therefore, they are relatively easy to functionalize using 

simple recombinant DNA technology techniques. In addition, ELPs’ phase transition property 

makes them very appealing for the synthesis of nanoparticles that are thermoresponsive and 

allow for improve concentration of treatment to a site that has been exposed to a temperature that 

is equal to or higher than the ELP Tt [10, 21, 22] Many studies have shown that ELPs greatly 
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preserve this phase transition property when fused to other domains [23, 24]. Based on these 

studies, we tested if our fusion (KLAKLAK)2-ELP preserve the self-assemble property of ELPs. 

Our results clearly showed that (KLAKLAK)2-ELP is in its soluble form at a temperature of 20 

oC while it aggregates to a size of about 350 nm at a temperature of 37 oC (Figure 2.2). Since 

these experiments were carried out as a cycle, with one cycle consisting of increasing and 

decreasing the temperature from 20 oC to 37 oC and back, we concluded that the ELP self-

assemble property was retained. TEM further confirmed the size of the (KLAKLAK)2-ELP 

aggregate to be about 350 nm (Fig 2.3).  

2.5.2.2 (KLAKLAK)2-ELP Causes Mitochondrial Swelling 

 Previous work has shown that (KLAKLAK)2 causes mitochondrial swelling through the 

disruption of the outer mitochondrial membrane [13]. We wanted to confirm that our fusion 

(KLAKLAK)2-ELP had the same toxic effect in cells. TEM analysis of our samples clearly 

indicated a difference between the mitochondria of the control compare the mitochondria of the 

(KLAKLAK)2-ELP treated sample (Figures 2.4 and 2.5). Therefore, we concluded that the mode 

of action of our fusion is similar to the (KLAKLAK)2 peptide. 

2.5.2.3 (KLAKLAK)2 Fused to ELPs Induces Cell Death Via Mitochondrial Depolarization 

 Previous studies have shown that (KLAKLAK)2 has low mammalian cell toxicity but can 

induce mitochondrial depolarization and subsequent apoptosis when fused to a homing domain 

[11, 13]. Furthermore, others have demonstrated that when (KLAKLAK)2 is part of a 

nanostructure that is functionalized with a cell penetrating peptide (CPP), it is internalized and 

causes cell death [16, 17].  Based on these findings, we fused (KLAKLAK)2 to elastin like 

peptides (ELP), (KLAKLAK)2-ELP, making it possible to form nanostructures as mentioned 

above. Surprisingly, after a 48-hour treatment, (KLAKLAK)2-ELP caused 30%, 85%, and 93% 
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of cell death at 20μM, 50μM and 100μM, respectively, without the need of a functionalizing 

domain. Moreover, the same treatment with the (KLAKLAK)2 peptide did not affect cell 

viability (Figure 2.6). To further test if cell death occurred due to mitochondrial depolarization as 

previously reported, we performed a JC-1 assay that distinguishes between healthy and 

depolarized mitochondria. This assay stains healthy mitochondria in red and depolarized 

mitochondria in green. After a 24 Hr. treatment with the (KLAKLAK)2-ELP fusion, cells 

displayed the presence of depolarized mitochondria, (Figures 2.7 and 2.8). Combined, these 

results suggest that the (KLAKLAK)2-ELP nanostructure caused cell death through 

mitochondrial depolarization even in the absence of a functionalized domain.  

2.5.2.4 Internalization of (KLAKLAK)2-ELP is Assisted by HSPG on the Cell Surface 

 Since the lack of a functionalizing domain in (KLAKLAK)2-ELP still resulted in cell 

death, we reasoned that ELPs might be involved in the uptake of (KLAKLAK)2-ELP.  Previous 

works have found that ELPs interact with the elastin receptor [25]. Furthermore, tropoelastin 

from which ELPs are derived interacts with HSPG on the cell surface [26]. Thus, we 

hypothesized that the internalization of (KLAKLAK)2-ELP could also be mediated by the 

interaction between the ELP portion of the fusion and one of these aforementioned molecules. 

To test this hypothesis, we carried out experiments in the presence of molecules that block the 

elastin receptor (lactose), cleave HSPG (heparinase III) or serve as a HSPG antagonist (surfen)  

[27]. First, cells were pretreated with lactose that binds to the elastin receptor preventing other 

molecules from binding to it. The presence of lactose did not affect the internalization of 

(KLAKLAK)2-ELP (Figure 2.9) suggesting that the elastin receptor is not involved in the 

internalization. Second, we pretreated the cells with heparinase III that cleaves HSPG from the 

cell surface. Our results showed a 70% decrease in (KLAKLAK)2-ELP internalization when 
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compared to control (Figure 2.9). Finally, to further confirm that HSPG was involved in 

(KLAKLAK)2-ELP internalization, cells were pretreated with surfen, which is a small molecule 

antagonist to HSPG [27]. The result showed that about 90% of (KLAKLAK)2-ELP 

internalization was blocked (Figure 2.9). Thus, these results clearly indicate that the 

internalization of (KLAKLAK)2-ELP depends on its interaction with HSPG. 

2.5.2.5 (KLAKLAK)2-ELP is Internalized by Macropinocytosis 

 To gain insight into the mechanism of uptake of (KLAKLAK)2-ELP aggregates, we used 

known blockers for two major endocytotic pathways. Chlorpromazine was used to block clathrin 

mediated endocytosis, amiloride and wortmannin to block macropinocytosis. Internalization 

experiments were carried out in the presence of each of these blockers using concentrations 

previously determined [20]. The results showed that (KLAKLAK)2-ELP uptake was not affected 

by chlorpromazine; however, amiloride and wortmannin decreased (KLAKLAK)2-ELP 

internalization by 70% and 75% , respectively (Figure 2.10). Altogether, these results indicate 

that macropinocytosis is the major mechanism involved in (KLAKLAK)2-ELP internalization.  

2.6 Discussion and Summary 

 The mitochondriotoxic peptide (KLAKLAK)2 is well known to disrupt the outer 

mitochondrial membrane causing swelling and mitochondrial depolarization; this translates to 

cell death. However, as demonstrated by others and us, cells are impermeable to (KLAKLAK)2; 

therefore, it has not cytotoxic effect unless it is uptaken by cells. Other groups have reported 

various strategies to improve (KLAKLAK)2 internalization by cells such as fusing it to cell 

penetrating peptides (CPP). Also, previous work suggested that (KLAKLAK)2 internalization 

can be improved by making it part of a nanoparticle in addition to functionalizing it with a CPP. 

Based on the latter, we synthesized (KLAKLAK)2-ELP, the ELP portion of the fusion provides 
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the nanoparticle backbone when expose to a temperature higher than its Tt.. Interestingly, we 

found that functionalization of the (KLAKLAK)2 was not needed to improve its uptake, but the 

nanoparticle formation was enough for its internalization and subsequent cell death. 

Furthermore, we show that (KLAKLAK)2-ELP causes mitochondrial swelling and 

depolarization; this is consistent with previously reported data. Therefore, our results clearly 

indicate that the cytotoxic mechanism of (KLAKLAK)2-ELP follows that of (KLAKLAK)2 

peptide. 

 We found that the predominant mechanism of uptake of (KLAKLAK)2-ELP 

nanoparticles by cells was macropinocytosis. Tumor cells exhibit higher levels of 

macropinocytosis than the normally quiescent non-cancerous cells [28, 29]. Thus, 

macropinocytosis on its own may provide certain level of selectivity towards killing of cancer 

cells. Indeed, it was observed that (KLAKLAK)2 nanoparticles demonstrated certain level of 

killing selectivity towards cancer cells [17]. Though, the mechanism of internalization was not 

reported in that study it is plausible that those nanoparticles were also being internalized by 

macropinocytosis thereby explaining the selectivity. 

 We also show that the internalization of ELP nanoparticles was dependent on their 

interaction with cell surface heparan sulfate proteoglycans (HSPG). This is in agreement with 

previous studies that have reported that tropoelastin from which ELPs are derived interacts with 

cell surface HSPG [26, 30]. The interaction of ELPs with HSPG may ensure proximity of the 

NPs to the cell surface where they will be uptaken by macropinocytosis. Interestingly, previous 

work has reported the importance of phase transition for the internalization of ELP based 

molecules [31].  Our data may explain this observation because during phase transition ELPs 

form β-strand structure, which has been reported as a common secondary structure for variety of 
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proteins that interact with cell membrane bound HSPG [32]. Thus, the phase transition allows 

ELPs to interact with HSPG facilitating its internalization. 

 In summary, we found that the fusion (KLAKLAK)2-ELP is mitochondriotoxic without 

the need to be functionalized; the nanoparticle conformation provided by the ELP backbone was 

enough to cause the internalization and cytotoxicity of the fusion. Furthermore, cell death occurs 

via mitochondrial depolarization and swelling. We found that the mechanism of internalization 

of (KLAKLAK)2-ELP is macropinocytosis; we believe the interaction between the ELP domain 

of the fusion and heparan sulfate on the cell membrane allows for the proximity required for 

macropinocytosis to act on the (KLAKLAK)2-ELP nanoparticles 

Table 2.1 (KLAKLAK)2 and ELP amino acid sequences. 

(KLAKLAK)2  KLAKLAKKLAKLAK 

ELP V40C2 

V VPGVG 

C (VPGVG)2-VPGCG-(VPGVG)2 
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Figure 2.1 Representation of (KLAKLAK)2-ELP synthesis and its thermoresponsive property. 
Top, representation of (KLAKLAK)2 gene, the ELP, and their translation to the fusion 

(KLAKLAK)2-ELP. Bottom, illustration of the phase transition property of the fusion above and 

below its transition temperature (Tt). The fusion is soluble below its Tt and aggregates above its 
Tt. 
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Figure 2.2 Characterization of (KLAKLAK)2-ELP by dynamic light scattering. (KLAKLAK)2-

ELP retains the self-assemble property of ELPs. Lyophilized (KLAKLAK)2-ELP resuspended in 
PBS to a final concentration of 50 μM was analyzed by DLS at 20 oC and 37 oC.. The graph 

shows clearly two peaks at about 5 nm and 350 nm representing the (KLAKLAK)2-ELP as 
unimers and as aggregates, respectively. 
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Figure 2.3 TEM of (KLAKLAK)2-ELP. This fusion protein aggregates to a size of about 360 nm 

as confirmed by TEM. (KLAKLAK)2-ELP was adsorbed on a carbon-coated grid, incubated at 
37 oC and stained with uranyl formate. Bar = 200 nm. 
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Figure 2.4 TEM of normal mitochondria. HCC827 were imaged by TEM. Red arrows show the location of the mitochondria. 
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Figure 2.5 TEM of mitochondrial swelling. HCC27 cells were treated with 50 μM of (KLAKLAK)2-ELP for 24 Hrs. Cells were then 

imaged by TEM. Red arrows indicate the location of the elongated mitochondria.  
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Figure 2.6 Cytotoxic effect of (KLAKLAK)2-ELP and (KLAKLAK)2 peptide. (KLAKLAK)2-

ELP induces cell death at high concentrations while the (KLAKLAK)2 peptide does not. Lung 
adenocarcinoma cells, A549, were treated for 48 Hrs. with different concentrations of 

(KLAKLAK)2-ELP or (KLAKLAK)2 peptide. The percent of live cells was calculated using a 
live/dead assay; pictures were then taken using a fluorescent microscope and the counting was 

done using image J. All the treatments were normalized to the control (no treatment). 
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Figure 2.7 Mitochondrial depolarization analysis by flow cytometry. A549 cells were treated for 

24 Hr. with 10μM of (KLAKLAK)2-ELP or 30 min. with a known mitochondrial depolarizer, 
CCCP. A JC-1 assay, which distinguishes between healthy and depolarized mitochondria, was 

then performed. Analysis was carried out by flow cytometry. The assay control is for gating 
purposes; the negative control consisted of untreated cells. The apoptotic label shows the area 

where cells with depolarized mitochondria are found while the non-apoptotic label shows the 

area where cells with healthy mitochondria are found. The results clearly show the 
mitochondriotoxic effect of (KLAKLAK)2-ELP. PI-A and FITC-A refer to red and green 

fluorescent channels, respectively. 
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Figure 2.8 Mitochondrial depolarization analysis by fluorescent microscopy. Cells were treated with either 10 μM of (KLAKLAK)2-

ELP or CCCP diluted to a final concentration of 50 μM. The control consisted of untreated cells. Mitochondria are stained red 
(healthy) or green (depolarized). The results clearly show that the fusion (KLAKLAK)2-ELP causes mitochondrial depolarization. Bar 

= 400μm. 
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Figure 2.9 (KLAKLAK)2-ELP internalization after blocking the elastin receptor complex and 

heparan sulfate proteoglycan. A549 cells were pretreated with lactose, Heparinase III, or surfen 
for 30 minutes, except for control. These cells were then treated with 10μM of labeled 

(KLAKLAK)2-ELP for 24 Hrs. The percent of cells uptaking the treatment was quantified by 
flow cytometry. To make sure that only internalized (KLAKLAK)2-ELP was quantified, trypan 

blue was added to the cell suspension before analysis to quench any labeled molecule bound to 

the cell surface. This experiment was repeated two times with triplicates. * indicates p < 0.05 
when compared to control. 

 



www.manaraa.com

 33 

 
Figure 2.10 (KLAKLAK)2-ELP internalization after blocking receptor mediated endocytosis and 

macropinocytosis. A549 cells were pretreated with chlorpromazine (receptor-mediated 
endocytosis blocker), wortmannin or amiloride (macropinocytosis blockers) for 1 Hr. The cells 

were then treated with 10μM of labeled (KLAKLAK)2-ELP for 24 Hrs. in the presence of the 
blockers before analysis by flow cytometry. Trypan blue was added to the cell suspension before 

analysis to prevent including particles that may be bound to the cell surface. This experiment was 

repeated two times with triplicates. * indicates p < 0.05 when compared to control.  Error bars 
represent ±SEM. 

 
 

 

 
 

 
 

 

 
 

 
 

 



www.manaraa.com

 34 

2.7 References 

 
[1] M. Shah, P. Y. Hsueh, G. Sun, H. Y. Chang, S. M. Janib, and J. A. MacKay, 

"Biodegradation of elastin-like polypeptide nanoparticles," Protein Sci, vol. 21, pp. 743-
50, Jun 2012. 

[2] M. R. D. Ashutosh Chilkoti, Dan E. Meyer, "Design of thermally responsive,  

recombinant polypeptide carriers for targeted drug delivery," Adv Drug Deliv Rev, vol. 
54, pp. 1093-1111, 2002. 

[3] J. Despanie, J. P. Dhandhukia, S. F. Hamm-Alvarez, and J. A. MacKay, "Elastin-like 
polypeptides: Therapeutic applications for an emerging class of nanomedicines," J 

Control Release, Nov 11 2015. 

[4] D. W. Urry, "Physical Chemistry of Biological Free Energy Transduction As 
Demonstrated by Elastic Protein-Based Polymers†," J Phys Chem B, vol. 101, pp. 11007-

11028, 1997. 

[5] T. Christensen, W. Hassouneh, K. Trabbic-Carlson, and A. Chilkoti, "Predicting 

transition temperatures of elastin-like polypeptide fusion proteins," Biomacromolecules, 

vol. 14, pp. 1514-9, May 13 2013. 

[6] D. M. Floss, K. Schallau, S. Rose-John, U. Conrad, and J. Scheller, "Elastin-like 

polypeptides revolutionize recombinant protein expression and their biomedical 
application," Trends Biotechnol, vol. 28, pp. 37-45, Jan 2010. 

[7] C. M. Bellingham, M. A. Lillie, J. M. Gosline, G. M. Wright, B. C. Starcher, A. J. Bailey, 

et al., "Recombinant human elastin polypeptides self-assemble into biomaterials with 
elastin-like properties," Biopolymers, vol. 70, pp. 445-55, Dec 2003. 

[8] F. W. Keeley, C. M. Bellingham, and K. A. Woodhouse, "Elastin as a self-organizing 
biomaterial: use of recombinantly expressed human elastin polypeptides as a model for 

investigations of structure and self-assembly of elastin," Philos Trans R Soc Lond B Biol 

Sci, vol. 357, pp. 185-9, Feb 28 2002. 

[9] G. L. Bidwell, 3rd and D. Raucher, "Cell penetrating elastin-like polypeptides for 

therapeutic peptide delivery," Adv Drug Deliv Rev, vol. 62, pp. 1486-96, Dec 30 2010. 

[10] W. Hassouneh, S. R. MacEwan, and A. Chilkoti, "Fusions of elastin-like polypeptides to 

pharmaceutical proteins," Methods Enzymol, vol. 502, pp. 215-37, 2012. 



www.manaraa.com

 35 

[11] M. Javadpour, M. Juban, W. Lo, and S. Bishop, "De Novo Antimicrobial peptides with 

Low Mammalian Cell Toxicity," Journal of Medicinal Chemistry, vol. 39, 1996. 

[12] C. Leuschner and W. Hansel, "Membrane disrupting lytic peptides for cancer treatments," 

Curr Pharm Des, vol. 10, pp. 2299-310, 2004. 

[13] M. Ellerby, A. Wadih, L. Ellerby, and R. Kain, "Anti-cancer activity of targeted pro-

apoptotic peptides," Nature America Inc., vol. 5, 1999. 

[14] E. M. Barbu, F. Shirazi, D. M. McGrath, N. Albert, R. L. Sidman, R. Pasqualini, et al., 
"An antimicrobial peptidomimetic induces Mucorales cell death through mitochondria-

mediated apoptosis," PLoS One, vol. 8, p. e76981, 2013. 

[15] S. Bouchet, R. Tang, F. Fava, O. Legrand, and B. Bauvois, "The CNGRC-GG-

D(KLAKLAK)2 peptide induces a caspase-independent, Ca2+-dependent death in human 

leukemic myeloid cells by targeting surface aminopeptidase N/CD13," Oncotarget, Dec 9 
2015. 

[16] S. Moktan and D. Raucher, "Anticancer activity of proapoptotic peptides is highly 
improved by thermal targeting using elastin-like polypeptides," Int J Pept Res Ther, vol. 

18, pp. 227-237, Sep 2012. 

[17] S. M. Standley, D. J. Toft, H. Cheng, S. Soukasene, J. Chen, S. M. Raja, et al., "Induction 
of cancer cell death by self-assembling nanostructures incorporating a cytotoxic peptide," 

Cancer Res, vol. 70, pp. 3020-6, Apr 15 2010. 

[18] D. E. Meyer and A. Chilkoti, "Genetically encoded synthesis of protein-based polymers 

with precisely specified molecular weight and sequence by recursive directional ligation: 

examples from the elastin-like polypeptide system," Biomacromolecules, vol. 3, pp. 357-
67, Mar-Apr 2002. 

[19] P. Koria, H. Yagi, Y. Kitagawa, Z. Megeed, Y. Nahmias, R. Sheridan, et al., "Self-
assembling elastin-like peptides growth factor chimeric nanoparticles for the treatment of 

chronic wounds," Proc Natl Acad Sci U S A, vol. 108, pp. 1034-9, Jan 18 2011. 

[20] X. X. Zhang, P. G. Allen, and M. Grinstaff, "Macropinocytosis is the major pathway 
responsible for DNA transfection in CHO cells by a charge-reversal amphiphile," Mol 

Pharm, vol. 8, pp. 758-66, Jun 6 2011. 



www.manaraa.com

 36 

[21] J. R. McDaniel, D. J. Callahan, and A. Chilkoti, "Drug delivery to solid tumors by 

elastin-like polypeptides," Adv Drug Deliv Rev, vol. 62, pp. 1456-67, Dec 30 2010. 

[22] W. Liu, M. R. Dreher, D. Y. Furgeson, K. V. Peixoto, H. Yuan, M. R. Zalutsky, et al., 

"Tumor accumulation, degradation and pharmacokinetics of elastin-like polypeptides in 
nude mice," J Control Release, vol. 116, pp. 170-8, Nov 28 2006. 

[23] A. J. S. Matthew R. Dreher, Karl Fischer, Richard J. Smith, Anand Patel, Manfred 

Schmidt, and Ashutosh Chilkot, "Temperature Triggered Self-Assembly of Polypeptides 
into Multivalent Spherical Micelles," J Am. Che. Soc., vol. 130, pp. 687-694, 2007. 

[24] I. Massodi, G. L. Bidwell, 3rd, and D. Raucher, "Evaluation of cell penetrating peptides 
fused to elastin-like polypeptide for drug delivery," J Control Release, vol. 108, pp. 396-

408, Nov 28 2005. 

[25] L. Duca, C. Blanchevoye, B. Cantarelli, C. Ghoneim, S. Dedieu, F. Delacoux, et al., "The 
elastin receptor complex transduces signals through the catalytic activity of its Neu-1 

subunit," J Biol Chem, vol. 282, pp. 12484-91, Apr 27 2007. 

[26] D. Gheduzzi, D. Guerra, B. Bochicchio, A. Pepe, A. M. Tamburro, D. Quaglino, et al., 

"Heparan sulphate interacts with tropoelastin, with some tropoelastin peptides and is 

present in human dermis elastic fibers," Matrix Biol, vol. 24, pp. 15-25, Feb 2005. 

[27] M. Schuksz, M. M. Fuster, J. R. Brown, B. E. Crawford, D. P. Ditto, R. Lawrence, et al., 

"Surfen, a small molecule antagonist of heparan sulfate," Proc Natl Acad Sci U S A, vol. 
105, pp. 13075-80, Sep 2 2008. 

[28] C. Commisso, S. M. Davidson, R. G. Soydaner-Azeloglu, S. J. Parker, J. J. Kamphorst, S. 

Hackett, et al., "Macropinocytosis of protein is an amino acid supply route in Ras-
transformed cells," Nature, vol. 497, pp. 633-7, May 30 2013. 

[29] G. Redelman-Sidi, G. Iyer, D. B. Solit, and M. S. Glickman, "Oncogenic activation of 
Pak1-dependent pathway of macropinocytosis determines BCG entry into bladder cancer 

cells," Cancer Res, vol. 73, pp. 1156-67, Feb 1 2013. 

[30] T. J. Broekelmann, B. A. Kozel, H. Ishibashi, C. C. Werneck, F. W. Keeley, L. Zhang, et 
al., "Tropoelastin interacts with cell-surface glycosaminoglycans via its COOH-terminal 

domain," J Biol Chem, vol. 280, pp. 40939-47, Dec 9 2005. 



www.manaraa.com

 37 

[31] D. Raucher and A. Chilkoti, "Enhanced uptake of a thermally responsive polypeptide by 

tumor cells in response to its hyperthermia-mediated phase transition," Cancer Res, vol. 
61, pp. 7163-70, Oct 1 2001. 

[32] R. E. Hileman, J. R. Fromm, J. M. Weiler, and R. J. Linhardt, "Glycosaminoglycan-
protein interactions: definition of consensus sites in glycosaminoglycan binding 

proteins," Bioessays, vol. 20, pp. 156-67, Feb 1998. 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 

 
 

 
 



www.manaraa.com

 38 

 

 
 

 
 

CHAPTER 3: KGF-ELP ENHANCES MACROPINOCYTOSIS IN KGFR 

OVEREXPRESSING CELLS 

 

3.1 Note to Reader 

 Part of this chapter was published in Medical Oncology: R. Iglesias and P. Koria, 

"Leveraging growth factor induced macropinocytosis for targeted treatment of lung cancer," Med 

Oncol, vol. 32, p. 259, Dec 2015. Permission is included in Appendix B 

3.2 Introduction 

 In this chapter we show that the fusion of the keratinocyte growth factor (KGF) and 

elastin like polypeptide (ELP), KGF-ELP, selectively enhances macropinocytosis in keratinocyte 

growth factor receptor (KGFR) overexpressing cells. Furthermore, we demonstrate that this 

selectivity can be further used to improve the internalization of the fusion (KLAKLAK)2-ELP 

discussed in the previous chapter. Finally, the heterogeneous nanoparticle comprising of KGF-

ELP and (KLAKLAK)2-ELP clearly improves the cytotoxic effect of (KLAKLAK)2-ELP in 

KGFR overexpressing lung cancer cells. 

3.3 Keratinocyte Growth Factor (KGF) 

 Growth factors are proteins whose functions include cell proliferation, migration, and 

differentiation [1]. The mode of action of these molecules is through their interaction with their 

receptor on the cell surface. Once this interaction occurs, intracellular signaling occurs that 

permits the cell to undergo several changes resulting in the functions mentioned above.  
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 Much emphasis has been placed on growth factor receptors as target for cancer 

treatment.[2-4] It is well known that a common characteristic of several cancer types is the 

overexpression of growth factor receptors such as the epidermal growth factor receptor (EGFR) 

[5, 6] and the keratinocyte growth factor receptor (KGFR) [7-9]. Therefore, one method used for 

targeted treatment has aimed at blocking the extracellular domain of these receptors using 

monoclonal antibodies (mAb); so that, the ligand/receptor interaction is loss and proliferation is 

halted [10]. However, mAb are highly specific and a minor change in their target makes them 

ineffective. Another way that has been used to target receptors is the use of small molecules that 

block the intracellular domain of the receptors so that signaling pathways are not activated when 

the ligand/receptor binding occurs [11]. However, the highly mutagenic nature of cancer cells 

can develop an alternative pathway rendering the treatment unproductive.  

 Others have looked at the interaction between growth factor and its receptors as an 

opportunity to selectively deliver cytotoxic cargo to cells overexpressing a receptor. For instance, 

once the ligand/receptor interaction occurs, the process of receptor mediated endocytosis (RME) 

initiates [12]. In addition, another internalization process that has been recently gaining more 

interest is macropinocytosis [13]. This transient process can also be activated or enhanced by 

growth factors and offers several advantages when compared to RME. For instance, 

macropinocytosis allows for the uptake of several molecules on the cell periphery while RME is 

limited to molecules that are in the areas where the interaction occurs. 

 One of the most common targets in lung cancer is the EGFR. The downside of targeting 

EGFR is that it is ubiquitously express; thus, it is likely that targeting this receptor results in 

unwanted systemic toxicity due to its stimulation in normal tissue. KGFR has been identified as 

another receptor that is overexpressed in lung cancer [8, 14]. The advantage of using this 
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receptor over EGFR is that KGFR is not expressed ubiquitously; therefore, systemic toxicity may 

be diminished. Based on this, we opted to target KGFR. However, due to the simplicity of the 

system we describe in this chapter, other growth factor receptors can easily be targeted such as 

HGF [15] and EGF [16]. 

3.4 Macropinocytosis 

 Endocytosis is a process through which cells internalize nutrients, hormones, proteins, 

and lipids that are required for diverse cell functions such as their proliferation, growth and 

health maintenance. The vesicles formed during endocytosis fuse with endosomes for cargo 

sorting and then either recycle back to the cell membrane and their contents expelled out from 

the cell or they can fuse with lysosomes for subsequent degradation of the cargo. Endocytosis 

can be subdivided into clathrin-dependent and clathrin-independent endocytosis depending on 

whether the protein clathrin coats or not the formed vesicles, (Figure 3.1). 

 Clathrin-dependent endocytosis is also known as receptor mediated endocytosis (RME). 

It is the most studied and understood endocytotic mechanism. One major characteristic RME is 

that it internalizes macromolecules selectively. In addition, this process requires the interaction 

between a ligand and its cell membrane receptor; these receptors are found on regions called 

clathrin-coated pits. Upon ligand-receptor interaction, closure of these pits result in the formation 

of vesicles that are coated with the protein clathrin making them leak-proof; therefore, the cargo 

does not diffuse into the cytoplasm. As mentioned above however, these vesicles will fuse with 

endosomes for sorting of their contents and eventual recycle or degradation by lysosomes.  

 Many studies have focus on the use of RME as a targeted delivery mechanism for drugs 

to treat cancer. However, due to innate characteristics of this mechanism,  it also provides many 

challenges for its use. Other works have reported endosomal entrapment of their drugs [17-19]. 
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This occurs because of the leak proof vesicles formed during RME do not permit the diffusion of 

the drugs into the cytoplasm, lowering or preventing the efficacy of the treatment due its low 

intracellular concentration. Another limitation is the size constraint when using RME. RME 

vesicles have a diameter of about 100 nm, which limits the amount of therapeutics that can be 

internalized. Furthermore, lysosomal degradation may also prevent the treatment from being 

successful.  

 Macropinocytosis is one of the clathrin-independent endocytotic mechanisms; it is an 

actin-driven process. Unlike receptor-mediated endocytosis however, this process does not rely 

directly on cargo/receptor interaction for its activation [20]. Therefore, macropinocytosis is a 

non-specific internalization mechanism. It is a transient process in most cells and it can be 

stimulated by the interaction between growth factors, such as the keratinocytes growth factor 

(KGF) and epidermal growth factor (EGF), and their receptors [16, 21, 22]. This interaction 

leads to an increase in actin polymerization that will result in cell membrane extensions called 

ruffles. Falling back of these ruffles on the plasma membrane results on the formation of vesicles 

called macropinosomes, which are characterized for being large, uncoated and leaky vesicles 

[23-25].  

 Many of the innate characteristics of macropinocytosis make it an interesting targeted 

mechanism to look into for targeted therapy. As mentioned above, macropinocytosis is non-

selective; therefore, it can indiscriminately internalize molecules that are bound to the cell 

membrane without the need for a specific cargo/receptor interaction. Consequently, the 

interaction between a growth factor and its receptor resulting in enhanced macropinocytosis can 

cause the uptake of multiple molecules bound on the cells surface [26]. In addition, the leaky 
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nature of macropinosomes allows for the diffusion of the uptaken molecules to the cytoplasm 

avoiding endosomal entrapment.  

 Having learned in the previous chapter that ELPs interact with heparan sulfate on the cell 

surface, it makes us reason that this interaction may assist in the internalization of ELP fusion 

molecules by allowing them to be bound to the cell surface for macropinocytosis to act on them. 

In addition, we reasoned that a growth factor fused to ELPs could result in enhancement of 

macropinocytosis. Therefore, this chapter deals with the use a heterogeneous nanoparticle 

consisting of (KLAKLAK)2-ELP and KGF-ELP, figure 3.5. This multifunctional nanoparticle 

allows for the selective enhancement of macropinocytosis in cells overexpressing the 

keratinocyte growth factor receptor (KGFR). At the same time, due to the ELP domain, many of 

these nanoparticles will be bound on the cell surface of the cell; therefore, many of them could 

be internalized. Once inside the cell, the (KLAKLAK)2-ELP fusion will cause cell death due to 

mitochondrial depolarization as described in the previous chapter.  

3.5 KGF-ELP Fusion Selectively Enhances Macropinocytosis 

3.5.1 Materials and Methods 

 Fetal bovine serum (FBS) and Dulbecco modified Eagle Medium (DMEM) were 

purchased from Life Technologies. The restriction enzymes and other enzymes used for cloning 

were purchased from New England Biolabs (Ipswich, MA). H292, A549, H1650, H23, and 

HCC827 cells were kindly donated by Dr. Haura from Moffit Cancer Center. CRCL2522, 

fibroblasts, were purchased from ATCC (Manassas, VA). Human Small Airway Epithelial Cells 

(SAEC) cells were kindly donated by Dr. Narasaiah Kolliputi from the Department of Internal 

Medicine at USF Health. Growth factors and apoptotic peptide genes were purchased from 

GenScript (Piscataway, NJ). The miniprep and gel extraction kits were purchased from 
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QIAGEN. The reagents for real-time polymerase chain reaction (RT-PCR) were purchased from 

Bio-Rad. 

3.5.1.1 Synthesis of KGF-ELP 

 The PUC57 plasmids containing the genes (VPGVG)5 , (VPGVG)2VPGCG(VPGVG)2 ,  

and KGF were purchased from Genscript (Piscataway, NJ). The V40C2 encoding gene was made 

using recursive direction ligation method as described previously [27]. The KGF gene was 

excised using PflMI and Bgll enzymes. This gene was then run on a 0.08% agarose gel and 

extracted using QIAquick Gel Extraction Kit. The restriction enzyme PflMI linearized the 

pUC19 vector containing the ELP sequence and the excised KGF gene was cloned in frame with 

the ELP gene.  This resulted in the pUC19 vector containing the KGF-ELP fusion protein gene 

flanked by pfIMI and BgII sites. The sequences encoding for the fusion protein was then 

removed from the pUC19 vector using pflMI and BgII enzymes and recovered by gel extraction 

as explained above. After extraction, this gene was cloned in a modified pET25b+ expression 

vector through SfiI site. This vector was modified to incorporate a SfiI cloning site for the 

cloning of the fusion protein. 

 The pET25b+ vector containing the fusion protein gene was transformed into BLRD 

competent cells through heat shock at 42oC. A starting culture of 50 ml was inoculated overnight 

and added to a 1 L culture the next day. The 1 L culture was then grown overnight and 

subsequently purified by inverse transition cycling as described previously [28]. Figure 3.2 

shows a representation of the genes for KGF and ELP and the production of the fusion KGF-

ELP. 
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3.5.1.2 Cell Culture  

 Cells were cultured in a humidified incubator at 370C and 5% CO2.  Cells were seeded on 

24 or 48-well plates until they were approximately 70% confluent.  CRL-2522 (non-malignant 

human foreskin fibroblast), A549 (human lung carcinoma), H292 (human lung carcinoma), 

HCC827 (human lung adenocarcinoma), H23 (human lung adenocarcinoma), and H1650 (human 

lung adenocarcinoma) were grown in DMEM supplemented with 10% FBS and 1% AA 

(Complete Medium). SAEC were cultured in airway epithelial cell basal medium (PCS-300-030) 

supplemented with Small Airway Epithelial Cell Growth Kit (PCS-301-040).  

3.5.1.3 Internalization of KGF-ELP  

 Cells (HCC827) were treated for 24 Hrs. with 50 μM of KGF-ELP. After the treatment, 

cells were fixed with 2.5% glutaraldehyde in 100 mM phosphate buffer at pH 7. Following 

fixation, standard embedding protocol for resin section was followed. TEM imaging was 

performed at Electron Microscopy Core Lab in the Interdisciplinary Science Building at the 

University of South Florida. Figure 3.3 shows the internalized KGF-ELP. 

3.5.1.4 Labeling of the Fusion Proteins 

 The cysteines present in the ELP sequence were labeled using maleimide chemistry for 

the particle internalization experiments. Fluorescein-5-maleimide (AnaSpec Inc cat # 81405) was 

mixed with the fusion proteins. The mixture was placed on an orbital shaker and incubated at 

room temperature for 2 hours. Unconjugated fluorescein was removed by a series of hot and cold 

cycles on a bench top centrifuge ran at a speed of 20000g for 10 minutes each time. The 

supernatant was discarded after the hot spin and an equal amount of cold sterile PBS was added. 

This mixture was spun at 4 0C and the supernatant was collected while the pellet was discarded. 
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This formed one complete cycle of inverse temperature cycling. At least 5 cycles were 

performed to remove of all the unconjugated Fluorescein.  

3.5.1.5 Fusion Protein Internalization Assay 

 Cells (50,000/well) were seeded in 24-well plates and cultured as described above. They 

were let grow until they were about 70% confluent and were treated with the indicated 

treatments. For analysis, cells were washed twice with ice-cold PBS and were trypsinized using 

0.25% trypsin (100 μl). Cells were pelleted and re-suspended in 300 μl of PBS containing 50 

-diamidino-2-

phenylindole (DAPI) to allow exclusion of nonviable cells. The cells were analyzed using flow 

cytometry and either the percent of fluorescent cells or the average intensity was quantified and 

reported.  

3.5.1.6 Dextran Assay 

 Twenty-four hours after the indicated treatment, dextran tetramethylrhodamine (Life 

Technolo

cytometry analysis, cells were washed at least five times with ice-cold PBS. The steps described 

above for flow analysis were then followed; however, trypan blue was not added. 

3.5.1.7 Gene Expression Using RT-PCR 

 Cells (500,000/well) were seeded on 6-well plates and let grow to about 80% confluency. 

RNA was isolated using the SV Total RNA isolation System (Promega cat # Z3100). cDNA 

synthesis was done using iScript cDNA synthesis Kit from BIO-RAD (cat # 1708890) following 

manufacturer’s protocol. RT-PCR was performed using BIO-RAD C1000 Thermal Cycler. The 

following primers were used for the KGFR cDNA amplification: forward primer 
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CAATTATATAGGGCAGGCCAACCAG and reverse primer AAGAAGACCCCTATGCAGT-

AAATGG. 

3.5.1.8 Live/Dead Assay 

 Cells were seeded and treated with the indicated treatments for 3 days. After their 

respective treatments, ethidium homodimer-1 (Life Technologies cat # E1169) was added to 

each well to a final concentration of 4uM. Cells were then incubated for 1 hour at 37oC. After the 

incubation time, cells were washed twice with PBS to remove floating cells. NucBlue (Life 

Technologies R37605) was then added for 20 minutes to stain nuclei, followed by two washes 

with PBS. Eight random pictures were taken per well using the EVOS fluorescence microscope 

(10X magnification). Pictures were taken in different channels (blue, green, red) and overlay. 

Live/dead cell discrimination was performed using image J.  A macro was created using the 

functions split channel, threshold, and cell counter to count the total number of live cells (blue) 

in each picture. Dead cells that were not removed after the washes were stained red or magenta 

(blue and red); adjusting the threshold for the picture being analyzed easily isolated these cells. 

Therefore, the final count of cells per picture only included live cells.  

3.5.1.9 Statistical Analysis 

 For statistical significance, the p value was calculated using ANOVA single factor.  P 

values < 0.05 were considered significant. The reported errors indicate the ±SEM.  

3.5.2 Results 

3.5.2.1 KGF-ELP Enhances Internalization of (KLAKLAK)2-ELP in KGFR Over-

expressing Cells 

 Macropinocytosis is a non-specific internalization process that results from cell ruffling; 

furthermore, this process can be enhanced by growth factors [21]. Therefore, we reasoned that a 
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treatment that includes growth factors could selectively enhance macropinocytosis in growth 

factor receptor expressing cells. Earlier work has reported the overexpression of the keratinocyte 

growth factor receptor (KGFR) in lung cancer cells [8]. Consequently, we used RT-PCR to 

measure the expression of this receptor in several cell types including five lung cancer cell lines 

and two noncancerous cell lines (Figure 3.4). We selected A549 cells for subsequent experiments 

since they had the highest expression of this receptor. Our lab has previously synthesized the 

fusion comprising of KGF and ELP, KGF-ELP, this fusion is bioactive and self-assembles into 

nanostructures [28]. In order to test our hypothesis of selective enhancement of macropinocytosis 

we created heterogeneous particles comprising of KGF-ELP and (KLAKLAK)2-ELP (Figure 

3.5); the internalization analysis was carried out using flow cytometry. The results clearly show 

that the heterogeneous particles containing (KLAKLAK)2-ELP improved (KLAKLAK)2-ELP 

uptake by 21 folds compared to homogeneous particles consisting of (KLAKLAK)2-ELP only 

(Figure 3.6). Since adding KGF-ELP to the (KLAKLAK)2-ELP formulation results in an 

increased number of particles, we compared the uptake to homogeneous particles containing 

similar concentration of (KLAKLAK)2-ELP as well as heterogeneous particles comprising of 

non-functionalized ELP and (KLAKLAK)2-ELP (Figure 3.6). These data clearly suggest that 

inclusion of KGF-ELP in the NP formulation improved the uptake of (KLAKLAK)2-ELP in 

KGFR overexpressing cells. To further demonstrate the role of KGF-ELP in targeted 

internalization, we compared the (KLAKLAK)2-ELP uptake in fibroblasts, which do not express 

the KGFR. Indeed, the increase in (KLAKLAK)2-ELP uptake induced by the inclusion of KGF-

ELP was not observed in fibroblasts (Figure 3.7). 

 We further wanted to demonstrate the direct relation between KGF-ELP treatment and 

enhanced macropinocytosis. To accomplish this task, macropinosome formation was quantified 
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after a 24 Hr. treatment with 1μM, 10μM or 50μM of KGF-ELP on A549 cells. Fluorescent 

pictures were taken for visual representation (Figure 3.8). The results were quantified using flow 

cytometry. Our data clearly suggest a dose dependent effect on macropinosome formation in 

A549 cells (Figure 3.9).  To show that this effect is selective, fibroblasts were also treated with 

50μM of KGF-ELP as described above. The results showed no increase in macropinosome 

formation (Figure 3.10). Combined, the results clearly imply that KGF-ELP induces 

macropinocytosis selectively in KGFR expressing cells.  

3.5.2.2 KGF-ELP Improves the Cytotoxic Effect of (KLAKLAK)2-ELP in KGFR 

Overexpressing Cells 

 After showing that a formulation containing KGF-ELP improved the internalization of 

(KLAKLAK)2-ELP in KGFR overexpressing cells, we tested if this higher internalization would 

translate to targeted cytotoxicity. While there was no effect on fibroblasts, the combination 

treatment resulted in about 35 % cell death in cells that had very little KGFR expression (Figure 

3.11). Interestingly, the combination treatment resulted in nearly 50% to 70 % cell death in high 

KGFR expressing cell lines (Figure 3.11, A549, HCC827, and H1650). These data show that the 

combination treatment of KGF-ELP and (KLAKLAK)2-ELP resulted in significantly higher cell 

death in high KGFR expressing cell. 

3.6 Discussion and Summary 

 Targeted therapy is increasingly becoming popular for the treatment of lung cancer. 

Currently, growth factor receptor tyrosine kinase inhibitors that target highly expressed growth 

factor receptors in lung cancer are used for treatment [29]. Here, we describe an approach of 

targeting lung cancer cells by exploiting the malignant processes that are inherent to them. 

Specifically, we report the development of two chimeric fusion proteins namely (KLAKLAK)2-
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ELP and KGF-ELP that self-assemble into nanoparticles. In chapter 2 we showed that 

(KLAKLAK)2-ELP nanoparticles are internalized by cancer cells resulting in cell death. This 

internalization occurs via macropinocytosis and is mediated by the interaction of the ELP 

domain with cell surface heparan sulfate proteoglycans (HSPG). In this chapter, we further show 

that KGF-ELP selectively enhances macropinocytosis in high Keratinocyte Growth Factor 

Receptor (KGFR) expressing cancer cells. Finally, heterogeneous NPs comprising of KGF-ELP 

and (KLAKLAK)2-ELP selectively kill high KGFR expressing lung cancer cells with very little 

impact on normal cells. 

 Macropinocytosis is enhanced by several growth factors [30, 31]. Therefore, growth 

factors can be used to target high growth factor receptor expressing lung cancer cells [8, 32]. 

Indeed, our data demonstrate that macropinocytosis can be enhanced in KGFR over expressing 

cells using the KGF-ELP fusion protein. This led to an increase in (KLAKLAK)2-ELP 

internalization by KGF-ELP only in cells overexpressing the KGFR. This uncovers the 

opportunity to selectively deliver therapeutics using growth factor induced macropinocytosis. 

While non-targeted macropinocytosis has been described for the delivery of lytic peptides or NPs 

using cell penetration peptides [33], no studies describe the use of the keratinocyte growth factor 

to achieve targeted delivery through macropinocytosis. Macropinocytosis is beneficial over the 

commonly described receptor mediated internalization approaches that usually involve clathrin-

coated endocytosis. Firstly, macrop

efficient internalization of several nanoparticles in one macropinosome [31]. Since, 

macropinosomes are inherently leaky, it allows rapid release of the nanoparticles in the cytosol 

escaping lysosomal degradation [34]. Finally, receptor mediated endocytosis results in the 

formation of one vesicle per ligand/receptor whereas in macropinocytosis once one nanoparticle 
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binds to the receptor it will result in the uptake of several nanoparticles in the vicinity of the cells 

due to cell surface ruffling induced by the growth factor; thereby, increasing efficiency of 

uptake. It is to be noted that this process involves enhancing the process of macropinocytosis 

through growth factor signaling as opposed to blocking it, which is in contrast to previous 

approaches. Therefore, care needs to be taken in using this strategy, as there might be some 

unwanted cancer enhancing effect due to growth factor receptor signaling.  

 In summary, in this chapter we have taken advantage and expanded on the findings in the 

previous chapter. Previously we demonstrated that (KLAKLAK)2-ELP is internalized by cells 

through the process of macropinocytosis. Furthermore, the ELP domain also becomes critical 

since it facilitates the (KLAKLAK)2-ELP nanoparticles to be bound to the cell surface; a step 

that is required for macropinocytosis. Since macropinocytosis can be stimulated by growth 

factors; in this chapter, we selectively enhanced macropinocytosis and the uptake of 

(KLAKLAK)2-ELP in KGFR overexpressing lung cancer cells using the fusion KGF-ELP. 

While we have focused on the delivery of the mitochondriotoxic peptide (KLAKLAK)2, this 

approach can easily be expanded to other peptides, imaging agents, or drugs thereby having 

broad applications in cancer as well as intracellular drug delivery. 
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Figure 3.1 Representation of clathrin-independent and clathrin-dependent endocytosis [35]. 

Right figure represents clathrin-independent endocytosis while left represent clathrin-dependent 
endocytosis. 
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Figure 3.2 Representation of the KGF-ELP purification and self-assemble property. Top, 

representation of the KGF gene, ELP genes, and their translation to the fusion (KLAKLAK)2-
ELP. Bottom, illustration of the phase transition property of the fusion above and below its 

transition temperature (Tt). 
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Figure 3.3 Internalization of KGF-ELP as seen by TEM. HCC827 cells were treated for 24 Hrs. with 50 μM of KGF-ELP; they were 

then prepared and analyzed as described in the materials and methods section. The red arrows show the location of the KGF-ELP 
nanoparticle. 

 

 



www.manaraa.com

 54 

 
Figure 3.4 KGFR expression in lung cancer and normal cells. RT-PCR was used to determine the 

Keratinocyte growth factor receptor (KGFR) expression in different cell lines. Normal lung cells 
(SAEC), cancerous lung cells (H292, H1650, A549, HCC827, H23), and normal skin cells 

(fibroblast) were tested for KGFR expression level. Cells were cultured in 6 well plates; once 
they were about 90% confluent, their total RNA was extracted and cDNA was produced as 

described in the material section. The results were normalized to Primary Small Airway 

Epithelial cells (SAEC). 
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Figure 3.5 Representation of the heterogeneous nanoparticle comprising of KGF-ELP and 

(KLAKLAK)2-ELP.  
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Figure 3.6 Enhanced internalization of (KLAKLAK)2-ELP assisted by KGF-ELP in KGFR 

overexpressing cells. A549 cells were treated for 24 Hrs. with four different formulations to test 
for improved internalization due to KGF-ELP. Since nanoparticle formation, which also 

improves internalization, is dependent on concentration, equimolar treatments in the absence of 
KGF-ELP were also included. Labeled (KLAKLAK)2-ELP (10 μM) was used in all treatments. 

The analysis was carried out using flow cytometry. Trypan blue was used in the sample 

suspensions before analysis to prevent the inclusion of particles bound on the cell surface in the 
analysis. These experiments were repeated two times with triplicates. * indicates p < 0.05 when 

compared to (KLAKLAK)2-ELP (10μ). 
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Figure 3.7 KGF-ELP does not improve internalization of (KLAKLAK)2-ELP in low KGFR 

expressing cells. Fibroblasts were treated with either labeled (KLAKLAK)2-ELP (10μ) or a 
combination of labeled (KLAKLAK)2-ELP (10μ) and KGF-ELP (10μ) as described above. The 

analysis was carried out as described above. These experiments were repeated two times with 
triplicates. * indicates p < 0.05 when compared to (KLAKLAK)2-ELP (10μ). 
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Figure 3.8 Dose-dependent enhancement of macropinosome formation in KGFR overexpressing cells. A549 cells were treated with 

varying concentrations of KGF-ELP (1 μM, 10 μM, and 50 μM). After 24 Hrs., dextran tetramethylrhodamine was added for 1 Hr. 
before analysis. Fluorescent picture were taken at 10x magnification. 
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Figure 3.9 Quantification of macropinosome formation in A549 cells after KGF-ELP treatment. 

A549 cells were serum starved for 24 Hrs. and then treated for 24 Hrs. with different 
concentration of KGF-ELP (1μM, 10μM or 50μM). After treatment, rhodamine-labeled dextran 

was added for 1 Hr. and cells were washed at least 5 times with ice cold PBS before analysis 
using flow cytometry. Treatments were normalized to the control (no treatment). These 

experiments were repeated two times with triplicates. * indicates p < 0.05 when compared to 

control (no treatment). 
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Figure 3.10 Quantification of macropinosome formation in fibroblast cells after KGF-ELP 

treatment. Fibroblasts were treated with 50μM of KGF-ELP following the steps described in 
figure 3.9; they were then analyzed by flow cytometry also following the aforementioned steps. 

These experiments were repeated two times with triplicates. * indicates p < 0.05 when compared 
to control (no treatment). 
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Figure 3.11 Cytotoxic effect of (KLAKLAK)2-ELP is higher in KGFR overexpressing cells 

when KGF-ELP is present. Fibroblasts, SAEC, H23, H292, A549, H1650 and HCC827 cells 
were serum starved for 24 Hrs. and then treated for 36 Hrs. with (KLAKLAK)2-ELP (10μM) 

combined with KGF-ELP (10μM). After treatment, cells were analyzed with a life/dead assay 
and quantified using image J. The treatments were normalized to their respective control (no 

treatment). These experiments were repeated two times with triplicates. * indicates p < 0.05 

when compared to control (no treatment). 
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CHAPTER 4: INHIBITION OF GLYCOLYSIS AS A POSSIBLE CANCER THERAPY 

 

4.1 Introduction 

 The enzyme phosphoglycerate mutase (PGM) has recently received much attention 

because it is the point at which glycolysis and anabolic biosynthesis are coordinated; this is done 

through the conversion of 3-phosphoglycerate (3PG) to 2-phosphoglycerate (2PG). PGM is 

activated by the phosphorylation of the histidine 11 (H11). In this chapter we show the synthesis 

of a fusion comprising of a peptide, KLVLIRHGESAW, derived from PGM and elastin like 

polypeptides (ELPs), PGM-ELP. The PGM domain in PGM-ELP comprises the H11 and a few 

more peptides from PGM; therefore, it acts as a competitive inhibitor for the phosphorylation of 

the PGM enzyme; the ELP domain will provide stability. Furthermore, we explore the cytotoxic 

effect of having multiple copies of the PGM peptide fused to ELP, (PGM)4-ELP, where the 

number indicates the number of PGM peptide copies in the fusion. 

4.2 Glycolysis and the Phosphoglycerate Mutase (PGM) Enzyme 

 One of the hallmarks of cancer is the uncontrolled proliferation and growth of cells. The 

formation of one cell is a very complex process that requires energy as well as the synthesis of 

macromolecules such as phospholipids, amino acids, and nucleic acids [1]. Energy in the form of 

ATP can be produced in two different areas of the cells and in the presence (aerobic) or not 

(anaerobic) of oxygen. ATP can be produced in the cytosol via glycolysis; this is very inefficient 

ATP producing pathway since it happens in the absence of oxygen; during glycolysis a net of 2 

ATP molecules are synthesized. ATP can also be synthesized within the mitochondria; this 
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process occurs in the presence of oxygen via oxidative phosphorylation; this process is called 

cell respiration. In the mitochondria, a net of 36 ATP molecules are obtained from a single 

molecule of glucose [2].  One could conclude that cancer cells, because of the high-energy 

requirements needed for proliferation, would favor aerobic respiration. However, several studies 

have consistently shown that the glycolytic rate in cancer cells is higher that in normal cells [3, 

4]; therefore, targeting glycolysis is an attractive alternative [5-7]. 

 Several studies have argued that higher ATP production is not likely the reason for high 

glycolytic rate; instead, they claimed that glycolysis provides the building blocks required for the 

synthesis of macromolecules (DNA, RNA, lipids, and proteins) needed for giving rise to new 

cells [8, 9]. Others maintained that glycolysis is responsible for faster ATP production needed for 

proliferating cells. Regardless of the conclusion of either of the arguments, it is clear that the 

inhibition of glycolysis can prove fruitful in the development of a targeted cancer therapy.  

 Glycolysis is a catabolic pathway through which a molecule of glucose is converted to 

two molecules of pyruvate through ten enzyme-catalyzed steps (Figure 4.1). Pyruvate is then 

taken into the mitochondria for energy production. During the different glycolytic steps, 

molecules that are the building block for macromolecules are synthetized. After glucose is 

internalized, it is phosphorylated forming glucose-6-phosphate (G6P). G6P participates in the 

pentose phosphate pathway that gives rise to nucleic acid synthesis. Glyceraldehyde-3-phosphate 

(G3P), an intermediate of glycolysis, participates in the synthesis of lipids. Also, the glycolytic 

intermediate 3-phosphoglycerate (3PG) contributes to the synthesis of amino acids.  

 Due to the involvement of glycolysis in biosynthesis, there are several possible targets in 

the glycolytic pathway that could result in proliferation and growth being halted [10-12]. Some 

of them are already being explored. For example, the compound 2-Deoxyglucose (2-DG) is a 
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glucose analog that reduces the phosphorylation of glucose by the enzyme hexokinase (HK) . 

HK does not distinguish between 2-DG and glucose; therefore, the phosphorylation of the analog 

by HK reduces the amount of phosphorylated glucose available for glycolysis [6, 13]. This 

blocks the pentose phosphate pathway resulting in the synthesis of ribose, precursor of nucleic 

acids, being halted. Furthermore, because 2-DG acts in the early steps of glycolysis, it also 

disrupt other anabolic reactions occurring downstream from the pentose phosphate pathway such 

as lipid and protein synthesis. Several studies have reported the positive results associate with 2-

DG when used alone [14] and in combination with other therapeutic agents [15, 16]; however, 

development of resistance has also being reported [17, 18]. Moreover, other studies have argued 

that the mechanism by which 2-DG inhibits cell growth need to be further studied since its 

mechanism of action is not fully understood [19].  

 Other groups have focus on the enzyme phosphoglycerate mutase (PGM) as a possible 

target to block glycolysis [20]. This enzyme is considered a useful target for cancer treatment 

because it is located at the branching point between glycolysis and anabolic biosynthesis [21-23], 

both required for cell growth and proliferation. In addition, PGM has been found to be 

overexpress in some cancers [24, 25]. This enzyme catalyzes the conversion of 3-

phosphoglycerate (3PG) to 2-phosphoglycerate (2PG). Inhibition of PGM will result in increase 

3PG and decrease 2PG, both of which have detrimental consequences for the cell. Accumulation 

of 3PG results in inhibition of the enzyme 6-phosphogluconate dehydrogenase (6PGD) [22]; this 

enzyme is part of the pentose phosphate pathway, which is responsible for the synthesis of 

nucleotide precursors. The reduction of 2PG reduces the activity of the enzyme 

phosphoglycerate dehydrogenase enzyme (PHGDH), preventing the synthesis of serine from 

3PG and further increasing the amount of 3PG. Furthermore, decrease in 2PG results in 
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reduction of phosphoenolpyruvate (PEP) and its conversion to pyruvate carried out by the 

enzyme pyruvate kinase (PK) isoform 2 (PKM2) which is stimulated by serine. In short, 

inhibiting this enzyme will have a dual effect; it will result in the reduction of ATP due to 

decrease in pyruvate synthesis (catabolic reaction) and inhibition of anabolic biosynthesis.  

 Previous work used a synthetic peptide (Leu-Ile-Arg-His-Gly-Glu or LIRHGE) derived 

from the PGM domain that included a histidine amino acid that is phosphorylated when PGM is 

in its active form [21]. This sequence was functionalized by the addition of a cell penetrating 

peptide (CPP) to increase its internalization. The results show a decrease in cell growth; 

however, the effect of the peptide dissipated after approximately three days and cancer cells 

continued proliferating. The study suggested that this could be due to degradation of the peptide.  

4.3 Fusion PGM-ELP  

4.3.1 Materials and Methods 

 Fetal bovine serum (FBS) and Dulbecco modified Eagle Medium (DMEM) were 

purchased from Life Technologies. The restriction enzymes and other enzymes used for cloning 

were purchased from New England Biolabs (Ipswich, MA). H292, A549, H1650, H23, and 

HCC827 cells were kindly donated by Dr. Haura from Moffit Cancer Center. CRCL2522, 

fibroblasts, were purchased from ATCC (Manassas, VA). Human Small Airway Epithelial Cells 

(SAEC) cells were kindly donated by Dr. Narasaiah Kolliputi from the Department of Internal 

Medicine at USF Health. The PGM gene was purchased from GenScript (Piscataway, NJ). The 

miniprep and gel extraction kits were purchased from QIAGEN. The reagents for RT-PCR were 

purchased from Bio-Rad. 
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4.3.1.1 Synthesis of PGM-ELP and (PGM)4-ELP 

 The PUC57 plasmids containing the genes (VPGVG)5 , (VPGVG)2VPGCG(VPGVG)2 ,  

and KLVLIRHGESAW (PGM sequence) were purchased from Genscript (Piscataway, NJ). The 

V40C2 encoding gene was made using recursive direction ligation method as described 

previously [26]. The PGM gene was excised using PflMI and Bgll enzymes. This gene was then 

run on a 0.08% agarose gel and extracted using QIAquick Gel Extraction Kit. The restriction 

enzyme PflMI linearized the pUC19 vector containing the ELP sequence and the excised PGM 

gene was cloned in frame with the ELP gene. This resulted in the pUC19 vector containing the 

PGM-ELP fusion protein gene flanked by pfIMI and BgII sites. The sequences encoding for the 

fusion protein was then removed from the pUC19 vector using pflMI and BgII enzymes and 

recovered by gel extraction as explained above. After extraction, this gene was cloned in a 

modified pET25b+ expression vector through SfiI site. This vector was modified to incorporate a 

SfiI cloning site for the cloning of the fusion protein. 

 The pET25b+ vector containing the fusion protein gene was transformed into BLRD 

competent cells through heat shock at 42oC. A starting culture of 50 ml was inoculated overnight 

and added to a 1 L culture the next day. The 1 L culture was then grown overnight and 

subsequently purified by inverse transition cycling as described previously [27]. Figure 4.2 

shows a representation of the genes for PGM and ELP and the production of the fusion PGM-

ELP. The fusion (PGM)4-ELP was synthesized as described above, but four copies of the PGM 

gene were cloned in frame with the ELP gene resulting in the fusion (PGM)4-ELP. 

4.3.1.2 Cell Culture  

 Cells were cultured in a humidified incubator at 370C and 5% CO2. Cells were seeded on 

24 or 48-well plates until they were approximately 70% confluent.  CRL-2522 (non-malignant 
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human foreskin fibroblast), A549 (human lung carcinoma), H292 (human lung carcinoma), 

HCC827 (human lung adenocarcinoma), H23 (human lung adenocarcinoma), and H1650 (human 

lung adenocarcinoma) were grown in DMEM supplemented with 10% FBS and 1% AA 

(Complete Medium). SAEC were cultured in airway epithelial cell basal medium (PCS-300-030) 

supplemented with Small Airway Epithelial Cell Growth Kit (PCS-301-040).  

4.3.1.3 Live/Dead Assay 

 Cells were seeded and treated only once for 1,2 ,or 6 days as indicated. The media was 

changed every two to three days but the treatment was not repeated. After their respective 

treatments, ethidium homodimer-1 (Life Technologies  cat # E1169) was added to each well to a 

final concentration of 4uM. Cells were then incubated for 1 hour at 37oC. After the incubation 

time, cells were washed twice with PBS to remove floating cells. NucBlue (Life Technologies 

R37605) was then added for 20 minutes to stain nuclei, followed by two washes with PBS. Eight 

random pictures were taken per well using the EVOS fluorescence microscope (10X 

magnification). Pictures were taken in different channels (blue, green, red) and overlay. 

Live/dead cell discrimination was performed using image J.  A macro was created using the 

functions split channel, threshold, and cell counter to count the total number of live cells (blue) 

in each picture. Dead cells that were not removed after the washes were stained red or magenta 

(blue and red); adjusting the threshold for the picture being analyzed easily isolated these cells. 

Therefore, the final count of cells per picture only included live cells.  

4.3.1.4 2-Phosphoglycerate (2PG) Assay 

 Cells (H292) were seeded in six-well plates (500,000/well). After 24 Hrs. they were 

treated for 48 Hrs. with either 10 μM or 100 μM of PGM-ELP. After treatment they were lysed 

following the assay protocol. The 2-phosphoglycerate colorimetric assay kit (BioVision cat # 
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k778-100) was used to measure the concentration of 2PG and the protocol was followed as 

described in the kit. 

4.3.1.5 Labeling of the Fusion Proteins 

 The cysteines present in the ELP sequence were labeled using maleimide chemistry for 

the particle internalization experiments. Fluorescein-5-maleimide (AnaSpec Inc cat # 81405) was 

mixed with the fusion proteins. The mixture was placed on an orbital shaker and incubated at 

room temperature for 2 hours. Unconjugated fluorescein was removed by a series of hot and cold 

cycles on a bench top centrifuge ran at a speed of 20000g for 10 minutes each time. The 

supernatant was discarded after the hot spin and an equal amount of cold sterile PBS was added. 

This mixture was spun at 4 0C and the supernatant was collected while the pellet was discarded. 

This formed one complete cycle of inverse temperature cycling. At least 5 cycles were 

performed to get rid of all the unconjugated Fluorescein. 

4.3.1.6 Fusion Protein Internalization Assay 

 Cells (50,000/well) were seeded in 24-well plates and cultured as described above. They 

were let grow until they were about 70% confluent and were treated with the indicated 

treatments. For analysis, cells were washed twice with ice-cold PBS and were trypsinized using 

0.25% trypsin (100 μl). Cells were pelleted and re-suspended in 300 μl of PBS containing 50 

-diamidino-2-

phenylindole (DAPI) to allow exclusion of nonviable cells. The cells were analyzed using flow 

cytometry and either the percent of fluorescent cells or the average intensity was quantified and 

reported.  
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4.3.1.7 Statistical Analysis 

 For statistical significance, the p value was calculated using ANOVA single factor. P 

values < 0.05 were considered significant. The reported errors indicate the ±SEM.  

4.3.2 Results 

4.3.2.1 The Fusion PGM-ELP Interferes with the Phosphoglycerate Mutase Enzyme 

 The glycolytic enzyme phosphoglycerate mutase (PGM) controls both the glycolytic 

pathway and the synthesis of macromolecules needed for cell growth and proliferation. Previous 

works showed that a using a peptide derived from the PGM domain could act as a competitive 

inhibitor for this enzyme and inhibit cell proliferation. However, this inhibition was transient and 

lasted for about 3 days; the study concluded this occurred because of the peptide degradation 

[21]. We reasoned that ELPs could increase stability of the peptide since previous works have 

shown that ELPs are resistant to degradation [28]. Therefore, we purified the fusion PGM-ELP 

and first tested for its bioactivity. Our results clearly show that the fusion PGM-ELP is bioactive 

and causes cell death at high concentration after 24 and 48 Hrs. (Figures 4.3, 4.4 and 4.5). 

Furthermore, since PGM-ELP competes with the phosphorylation of PGM (Figure 4.6), a 

decreased in PGM phosphorylation would result in the 2PG concentration decrease. Indeed, we 

found that treatments with PGM-ELP decreased the amount of 2PG (Figure 4.7) after 48 hours. 

Combined, these results suggest that PGM-ELP is bioactive and causes cell death by competing 

with an enzyme (PGM) in the glycolytic pathway. 

 We wanted to test the cytotoxicity of PGM-ELP in different cells lines. Therefore, lung 

cancer cells (A549, H23, HCC827, H292), connective tissue cells (Fibroblasts, Fb), and normal 

lung cells (Small airway epithelial cells, SAEC) were tested for PGM-ELP cytotoxicity. Cells 

were treated as describe in the material and methods section with 50 μM of PGM-ELP. After 6 
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days, PGM-ELP displays cytotoxic effects in all cell lines; however, its effect is noticeable 

higher in the lung cancer cells (Figure 4.8). Furthermore, to test if the ELP domain assisted in 

improving the killing effect of the PGM domain, cells were also treated with the PGM peptide 

(50 μM) and the results were compared to the PGM-ELP 50 μM treatment (Figure 4.9). The 

results clearly show that the fusion PGM-ELP is much more cytotoxic than the PGM peptide.  

4.3.2.2 The Internalization of PGM-ELP is Improved by KGF-ELP 

 We reasoned that the internalization and therefore cytotoxic effect of PGM-ELP could be 

enhanced if the endocytotic mechanism of macropinocytosis is stimulated. As described in 

chapter 3, the fusion KGF-ELP induces macropinocytosis in keratinocyte growth factor receptor 

(KGFR) overexpressing cells (A549); therefore, an heterogeneous nanoparticle comprising of 

PGM-ELP and KGF-ELP (Figure 4.10) could improve the internalization of PGM-ELP in A549 

cells. Indeed, our results clearly show that including KGF-ELP in the treatment resulted in an 

approximately 20 fold increase when compared to the PGM-ELP 10 μM treatment (Figure 4.11). 

However, since adding 5 μM of KGF-ELP changes the molarity of the treatment, we also 

included and 15 μM PGM-ELP treatment; this still shows more than a 2-fold increase when 

KGF-ELP is part of the treatment (Figure 4.11). In addition, the treatment consisting of 

unfunctionalized ELP and PGM-ELP shows no increased in PGM-ELP internalization when 

compared to the 15 μM PGM-ELP (Figure 4.11). Altogether, the data implies that KGF-ELP 

improves internalization of PGM-ELP.  

4.3.2.3 KGF-ELP Enhances the Cytotoxic Effect of PGM-ELP in KGFR Overexpressing 

Cells 

 Having found that KGF-ELP increases PGM-ELP internalization in A549 cells, we tested 

if this would translate to higher cytotoxicity in these cells. Cells were treated as described in the 
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material and methods section and a concentration of PGM-ELP that did not cause cytotoxicity 

after 3 days was used (50 μM). The results show clearly that after 6 days PGM-ELP is cytotoxic 

and about 55% of cells have died (Figure 4.12). Interestingly, the treatment that included the 

fusion KGF-ELP caused almost 95% of cell death (Figure 4.12). These results further confirmed 

that the inclusion of KGF-ELP improves internalization and cytotoxicity of PGM-ELP. 

 Cells with different levels of KGFR expression (chapter 3) were treated with the 

formulations PGM-ELP (50 μM) or PGM-ELP (50 μM) and KGF-ELP (20 μM). All cells, 

except A549, show no improvement by the inclusion of KGF-ELP in the treatment (Figure 4.13). 

A549, having the highest KGFR expression, shows a definite increase in cells death. Altogether, 

the results propose that the presence of KGF-ELP adds selectivity to the treatment. 

4.3.2.4 The Addition of Multiple PGM Domains to ELP Enhances Cytotoxicity 

 Having observed that PGM-ELP is cytotoxic, we reasoned that this effect could be 

boosted if multiple PGM domains are fused to ELP. To this end, we added four PGM domains to 

ELP, (PGM)4-ELP. We treated HCC827 cells, as described above, with varying concentrations 

of (PGM)4-ELP (10 μM, 50 μM, and 100 μM) for 3 days. Interestingly, all concentrations 

induced cell death (Figure 4.14) after this short period of time. Furthermore, Figure 4.15 clearly 

shows that the same treatment (50 μM) of (PGM)4-ELP and PGM-ELP induced approximately 

the same amount of cells death but (PGM)4-ELP only took 3 days compared to the 6 days 

needed for PGM-ELP.  

4.4 Discussion and Summary 

 The tumor microenvironment is very complex; a single tumor has cells with different 

genotypes; therefore, a single therapeutic might not be enough to prevent the tumor from 

growing. Many have looked into targeting glycolysis since higher than normal glycolytic rate has 
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been observed in cancer cells regardless of their genotype. Herein, we report the synthesis of the 

fusion protein PGM-ELP that inhibits glycolysis resulting in cell death. Furthermore, we show 

that the heterogeneous nanoparticle comprising of PGM-ELP and KGF-ELP enhances 

internalization and cytotoxic effect of PGM-ELP in KGFR overexpressing cells. Finally, a fusion 

consisting of multiple copies of the PGM domain fuse to ELP, (PGM)4-ELP, improves the 

fusion cytotoxic effect. 

 Previous works have demonstrated that using an amino acid sequence from the 

phosphoglycerate mutase enzyme (PGM) that encompasses the histidine 11 (H11) prevents cell 

proliferation. However, the promising observations are only temporary; the study suggested the 

degradation of the peptide as the cause. We synthesized the fusion PGM-ELP; the PGM domain 

in this fusion is derived from the PGM enzyme and encompasses H11. The ELP would provide 

stability by preventing degradation. Our results clearly show this fusion to be bioactive and 

causing cell death after three days but only at high concentrations (100 μM). Furthermore, the 

cytotoxic effect is also observed in various cell lines after 6 days, even at low concentrations (50 

μM). We believe this observation is because of the number of H11 sites available. The lower 

concentration offers less number of H11 sites; therefore, glycolytic inhibition takes longer. This 

could explain why a 50 μM treatment does not cause cell death after 3 days, but it does after 6 

days. In addition, since the cells were treated only once during the 6-day period, it is reasonable 

to conclude that the PGM-ELP was still present within the cells. Therefore, the ELP domain 

provided stability to the fusion. Moreover, the treatment with the PGM peptide was much less 

cytotoxic than the fusion PGM-ELP. We reasoned that this could be attributed to the stability 

imparted by the ELP domain as well as the interaction between the ELP domain and the cell 

surface. This interaction permits the PGM-ELP fusion to be bound to the cell surface; therefore, 
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allowing cells to have more access to the molecules compared to the unbound PGM peptide. Our 

data also demonstrates that the fusion PGM-ELP acts by affecting glycolysis; this can be 

concluded from the approximately 60% reduction in the concentration of 2PG in the treated 

cells. 2PG is the product of the PGM enzyme; therefore, a drastic reduction in its concentration 

can safely be attributed to an inhibited PGM enzyme. 

 Additionally, our data shows that not all cells responded equally to the PGM-ELP 

treatment. The most obvious difference is observed in groups, cancer cell group versus normal 

cell group. One reason why cancer cells responded better to the treatment can be attributed to 

their inherently more active nature; cancer cells exhibit higher levels of macropinocytosis 

compared to normal cells. Another plausible explanation is that cancer cells are highly dependent 

on glycolysis; therefore, inhibiting this pathway may have more impact in cancer than in normal 

cells. 

 Our results show that the addition of the KGF-ELP fusion to the treatment resulted in 

higher PGM-ELP uptake in KGFR overexpressing cells. Some of the internalization can be 

attributed to the higher concentration of the treatment that included KGF-ELP. However, when 

the same concentration treatments are compared, there still exist an increase in PGM-ELP uptake 

when KGF-ELP is part of the formulation. This can be associated to the enhancement of 

macropinocytosis due to the interaction between KGF-ELP and the KGFR as demonstrated in 

chapter 3.  Furthermore, the increase in internalization also resulted in improved cytotoxicity in 

cells overexpressing the KGFR. Our data clearly shows that KGFR overexpressing cells 

decreased by approximately 80% when compared to the formulation containing only PGM-ELP.  

 Previously, we hypothesized that the number H11 sites available may be the reason for 

the lower concentration treatment (50 μM) to take effect after 6 days; therefore, we synthesized a 
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fusion containing four H1 sites, (PGM)4-ELP. The results clearly display a dose dependent 

cytotoxic effect. Interestingly, the killing effect was observed after only 3 days. Comparing the 

HCC827 data for the 50 μM PGM-ELP treatment (6 days) and 50 μM (PGM)4-ELP treatment (3 

days) , it becomes very apparent the improvement in efficiency and cytotoxicity due to the higher 

number of H11 sites. The HCC827 6-day treatment resulted in an approximately 60% cell death 

while the 3-day treatment resulted in about 70% cell death. Therefore, our data validates the idea 

that increasing the number of H11 sites improves toxicity by PGM-ELP. 

 In summary, we have demonstrated that the fusion PGM-ELP induces cell death by 

inhibiting glycolysis. Furthermore, this fusion seems to have a higher effect in cancer cells, 

which could be related to their high dependence in glycolysis and/or their intrinsic more active 

nature. We also showed that the heterogeneous nanoparticle comprising of KGF-ELP and PGM-

ELP enhances the internalization and cytotoxic effect of PGM-ELP in KGFR overexpressing 

cells. Lastly, our data suggests a correlation between the number of H11 sites and the efficacy of 

the PGM-ELP; that is, (PGM)4-ELP is more efficient than PGM-ELP in terms of killing time 

and percent of killing. 
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Figure 4.1 Representation of the glycolytic pathway [29]. 
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Figure 4.2 Graphical representation of PGM-ELP synthesis and its self-assemble property. Top, 

representation of the PGM gene, ELP genes, and their translation to the fusion PGM-ELP. 
Bottom, illustration of the phase transition property of the fusion above and below its transition 

temperature (Tt). The fusion is soluble below its Tt and aggregates above its Tt. 
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Figure 4.3 Phase contrast picture of the PGM-ELP treatment. A549 cells were treated for 3 days; after which, phase contrast 
microscope pictures were taken. Top row show 4X magnification and bottom row 10X magnification, the columns show the different 

concentrations used (10 μM, 50 μM, and 100 μM). The control received no treatment. 
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Figure 4.4  Quantification of live cells after a 24 Hr. treatment with PGM-ELP. A549 were 

seeded and quantified as described in M&M. All the treatments have been normalized to the 
control. 
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Figure 4.5 Quantification of live cells after a 48 Hr. treatment with PGM-ELP. A549 were 

seeded and quantified as described in M&M. All the treatments have been normalized to the 
control. 
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Figure 4.6 Graphical representation of the intracellular effect of PGM-ELP on the glycolytic 
pathway. Briefly, the phosphorylating complex that activates the PGM enzyme will also 

phosphorylate the PGM-ELP fusion. This reduces the availability of activated PGM, which 
results in increase 3-PG and decrease 2-PG. Higher 3-PG concentration blocks 6PGD; therefore, 

glycolysis and macromolecule synthesis (Ribose-5-phosphate) are inhibited. 
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Figure 4.7 2PG intracellular concentration in H292 cells after PGM-ELP treatment. A 2PG 

colorimetric assay was used to show inhibition of the PGM enzyme. H292 cells were treated 
with PGM-ELP (10 μM and 100 μM) for 48 Hrs. After the treatment the concentration of 2PG 

was measured and normalized to the control (no treatment). 
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Figure 4.8 Quantification of live cells in various cell types after PGM-ELP treatment. Various cell lines (cancerous and non 

cancerous) were treated with 50 μM of PGM-ELP. The media was changed every two days after treatment and the cells were not 
retreated. Six days after treatment, the quantification was done as described in the M&M section.  

 



www.manaraa.com

 87 

 
Figure 4.9 PGM peptide and PGM-ELP treatments. Cells were treated with 50 μM of either 

PGM peptide or PGM-ELP for 6 days. The media was changed every two days, but the 
treatments were not repeated. Clearly, the data shows that PGM-ELP is more cytotoxic than the 

PGM peptide. Treatments were normalized to their respective PGM peptide treatment. 
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Figure 4.10 Graphical representation of the heterogeneous nanoparticle comprising of KGF-ELP 

and PGM-ELP. 
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Figure 4.11 Normalized internalization of PGM-ELP in the presence and absence of KGF-ELP. 

A549 cells were treated with the described formulations for 24 Hrs. All formulations consist of 
10 μM labeled PGM-ELP. The intensity relates to the amount of labeled PGM-ELP internalized 

per cell. The quantification was carried out by flow cytometry. * = p < 0.05. Number in paren-
thesis represent the concentration in μM. 
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Figure 4.12 KGF-ELP enhances the PGM-ELP cytotoxic effect in KGFR overexpressing cells. 

A549 were treated once and the media was changed every two days. Six days after treatment, the 
quantification was done as described in the M&M section; the results were normalized to the 

control (no treatment). * = p < 0.05.Number in parenthesis represent the concentration in μM. 
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Figure 4.13 KGF-ELP enhances PGM-ELP cytotoxicity only in KGFR overexpressing cells. Various cell lines (cancerous and non 

cancerous) were treated with 50 μM of PGM-ELP and 20 μM of KGF-ELP. The media was changed every two days after treatment 
and the cells were not retreated. Six days after treatment, the quantification was done as described in the M&M section. Results were 

normalized to the PGM-ELP treatment. 
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Figure 4.14 (PGM)4-ELP induces killing in a dose dependent manner. HCC827 cells were 

treated for 3 days with the (PGM)4-ELP fusion with the shown concentrations. The results were 
normalized to the control (no treatment). * = p < 0.05. 
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Figure 4.15 (PGM)4-ELP is more cytotoxic than PGM-ELP. HCC827 cells were treated with the 

same concentrations of (PGM)4-ELP and PGM-ELP for 3 and 6 days, respectively. The graph 
clearly shows approximately the same percent of live cells after treatment when each is 

compared to its respective control (no treatment).  
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CHAPTER 5: SUMMARY, CONCLUSIONS AND FUTURE WORK 

 

5.1 Summary and Conclusions 

 In this doctoral research, we have shown the selective enhancement of macropinocytosis 

for the treatment of lung cancer. This is a novel approach that takes advantage of an endocytotic 

mechanism that is inherently present in cancer cells, macropinocytosis. Macropinocytosis is 

transient and can be stimulated by the interaction between growth factors and their receptors on 

the cell surface. Herein, we used the keratinocyte growth factor receptor (KGFR) as the target for 

our treatment; this receptor has been reported to be overexpressed in lung cancer. We used the 

fusion comprising of the keratinocyte growth factor (KGF) and elastin like polypeptides (ELPs), 

KGF-ELP, previously synthesized in our lab to enhance macropinocytosis in KGFR 

overexpressing cells. After this selective enhancement, a mitochondriotoxic fusion peptide 

comprising of (KLAKLAK)2 and ELP, (KLAKLAK)2–ELP, was delivered causing 

mitochondrial depolarization and subsequent cell death.  Finally, we used a glycolytic inhibitory 

peptide and fuse it to ELPs, PGM-ELP. This peptide was also delivered selectively to KGFR 

overexpressing cells using the KGF-ELP fusion; this also resulted in selective killing.  

 In chapter 2, we found that the fusion (KLAKLAK)2-ELP is mitochondriotoxic without 

the need to be functionalized; the nanoparticle conformation provided by the ELP backbone was 

enough to cause the internalization and cytotoxicity of the fusion. Furthermore, cell death occurs 

via mitochondrial depolarization and swelling. We found that the mechanism of internalization 

of (KLAKLAK)2-ELP is macropinocytosis; we believe the interaction between the ELP domain 
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of the fusion and heparan sulfate on the cell membrane allows for the proximity required for 

macropinocytosis to act on the (KLAKLAK)2-ELP nanoparticles. 

 In chapter 3, we have taken advantage and expanded on the findings in the previous 

chapter. Previously we demonstrated that (KLAKLAK)2-ELP is internalized by cells through the 

process of macropinocytosis. Furthermore, the ELP domain also becomes critical since it 

facilitates the (KLAKLAK)2-ELP nanoparticles to be bound to the cell surface; a step that is 

required for macropinocytosis. Since macropinocytosis can be stimulated by growth factors; in 

this chapter, we selectively enhanced macropinocytosis and the uptake of (KLAKLAK)2-ELP in 

KGFR overexpressing lung cancer cells using the fusion KGF-ELP. While we have focused on 

the delivery of the mitochondriotoxic peptide (KLAKLAK)2, this approach can easily be 

expanded to other peptides, imaging agents, or drugs thereby having broad applications in cancer 

as well as intracellular drug delivery. 

 In chapter 4, we have demonstrated that the fusion PGM-ELP induces cell death by 

inhibiting glycolysis. Furthermore, this fusion seems to have a higher effect in cancer cells, 

which could be related to their high dependence in glycolysis and/or their intrinsic more active 

nature. We also showed that the heterogeneous nanoparticle comprising of KGF-ELP and PGM-

ELP enhances the internalization and cytotoxic effect of PGM-ELP in KGFR overexpressing 

cells. Lastly, our data suggests a correlation between the number of H11 sites and the efficacy of 

the PGM-ELP; that is, (PGM)4-ELP is more efficient than PGM-ELP in terms of killing time 

and percent of killing.  

5.2 Future Work 

 The work we presented in this dissertation shows an innovative approach for targeted 

therapy; therefore, we believe it lays the groundwork for its advancement. Furthermore, due to 
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the adaptability of this system, it can easily be expanded to treat other types of cancers that may 

overexpress different growth factor receptors than the one we targeted such as the epidermal 

growth factor receptor as it occurs in breast and pancreatic cancers. 

 In addition, we focused on the selective delivery of cytotoxic peptides that aimed at either 

the mitochondria or glycolysis. However, due to the simplicity of our system, it is possible the 

formation of multivalent nanoparticles that could selectively aim at multiple targets. For 

instance, instead of targeting either the mitochondria or glycolysis, a multivalent nanoparticle 

could disrupt the mitochondria while blocking glycolysis; this could have synergistic effects on 

the treatment of cancer. Moreover, this targeted system is not limited to the delivery of cytotoxic 

peptides. Due to the cysteine amino acid that forms part of our ELP construct, using simple 

maleimide chemistry allows the conjugation of cancer therapeutics that can be selectively 

delivered by macropinocytosis. This could result in improved intracellular concentration of the 

therapeutics, prevention of endosomal entrapment and lysosomal degradation.  

 Finally, the application of selectively stimulating macropinocytosis is not limited to the 

treatment of cancer. We believe that it can be further exploited in other fields such as in gene 

therapy. In this field, the targeted delivery of a gene is critical since unwanted gene insertion or 

inactivation may have severe consequences on the patient. Therefore, a selective delivery of the 

gene by macropinocytosis can ensure the therapy reaches its target and minimizes side effects. 

 Overall, we envision that further study of our work can result in improving current 

targeted treatments for cancer. Additionally, we see the possibility of expanding this research to 

other fields for which selective delivery is paramount. 
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Appendix A: List of Abbreviations 

(KLAKLAK)2  .......................KLAKLAKKLAKLAK 

2-DG ...................................... 2-Deoxyglucose 

2PG ........................................2-Phosphoglycerate 

3PG ........................................3-Phosphoglycerate 

6PGD......................................6-phosphogluconate dehydrogenase 

A .............................................Alanine 

A549 .......................................Adenocarcinoma cells, non-small cell lung cancer 

ATP ........................................Adenosine triphosphate 

CCCP .....................................Carbonylcyanide m- chlorophenylhydrazone 

CO2 .........................................Carbon dioxide 

Cyt c .......................................Cytochrome c 

DAPI ......................................4',6-diamidino-2-phenylindole 

DLS ........................................Dynamic light scattering 

DNA .......................................Dioxyribose nucleic acid 

E .............................................Glutamate 

EGF ........................................Epidermal growth factor 

EGFR .....................................Epidermal growth factor receptor 

ELP ........................................Elastin like polypeptide 

ETC ........................................Electron transport chain 

Fb ...........................................Fibroblast 

FBS ........................................Fetal bovine serum 

FITC .......................................Fluorescein isothiocyanate 
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G3P ........................................Glyceraldehyde-3-phosphate 

G6P ........................................Glucose-6-phosphate 

Gly..........................................Glycine 

H .............................................Histidine 

H11 .........................................Histadine at location 11  

H1650 .....................................Adenocarcinoma cells, non-small cell lung cancer 

H23 .........................................Adenocarcinoma cells, non-small cell lung cancer 

H292 .......................................Adenocarcinoma cells, non-small cell lung cancer 

HCC827 .................................Adenocarcinoma cells, non-small cell lung cancer 

HGF........................................Hepatocyte growth factor 

HK ..........................................Hexokinase 

HSPG .....................................Heparan sulfate proteoglycan 

I ..............................................Isoleucine 

ITC .........................................Inverse temperature cycling 

K .............................................Lysine 

KGF........................................Keratinocyte growth factor 

KGFR .....................................Keratinocyte growth factor receptor 

L .............................................Leucine 

LCST ......................................Lower critical solution temperature 

M&M .....................................Materials and methods 

mAb........................................Monoclonal antibodies 

MET .......................................MET proto-oncogene 

NSCLC ...................................Non-Small Cell Lung Cancer 
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O2 ...........................................Oxygen 

PBS ........................................Phosphate buffered-saline 

PEP .........................................phosphoenolpyruvate 

PGM .......................................Phosphoglycerate mutase 

PHGDH ..................................phosphoglycerate dehydrogenase enzyme 

PK ..........................................Pyruvate kinase 

PKM2 .....................................Pyruvate kinase isoform 2 

Pro ..........................................Proline 

R .............................................Arginine 

RME .......................................Receptor mediated endocytosis 

RNA .......................................Ribonucleic acid 

RT-PCR..................................Real-time polymerase chain reaction 

S .............................................Serine 

SAEC .....................................Small airway epithelial cells 

SEM .......................................Square error of the mean 

TEM .......................................Transmission electron microscopy 

TKI .........................................Tyrosine kinase inhibitor 

Tt ............................................Transition temperature 

Val ..........................................Valine 

W ............................................Tryptophan 

X .............................................Guest amino acid residue 

μM ..........................................Micromolar 
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 The permission below is for material in Chapters 2 and 3. 
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